资源描述:
《数学九年级上沪科版24.5位似图形课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ABA’C’B’CO23.5位似图形复习回顾相似图形:相似多边形:形状相同的两个图形。两个边数相同的多边形,对应角相等,对应边的比相等。经过放大或缩小,没有改变图形形状,与原图是相似的。下图各组是经过放大或缩小得到的多边形,它们相似吗?如果相似,观察那么这种相似什么特征?是相似图形每组对应顶点连线相交于一点,对应边互相平行或共线位似一.位似图形的概念相似对应顶点的连线相交于一点对应边平行(或共线)明确:注:三者缺一不可!如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心,其相似比又叫做位似比.BAA’
2、EDCE’D’C’B’做一做例1.判断下列各对图形是不是位似图形.(1)相似五边形ABCDE与五边形A’B’C’D’E’;(是)(2)正方形ABCD与正方形A’B’C’D’;(是)CABD’C’B’A’D(3)等边三角形ABC与等边三角形A’B’C’.C’CB’BA’A(是)例2、判断下列各对图形哪些是相似图形,哪些是位似图形.做一做结论1:位似图形是相似图形的特殊情形,位似的要求更为苛刻。相似且位似相似但不是位似ABCDEFG相似但不是位似②∠AED=∠B①DE∥BC③两个正方形观察下列位似图形的位似中心,你发现了什么?结论2:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧,
3、异侧,图形的内部,边上,或顶点上二.位似图形的性质⑵特殊性质:位似图形上任意一对对应顶点到位似中心的距离之比等于位似比.⑴一般性质:具有相似多边形的性质周长比等于位似比面积比等于位似比的平方O.ABCA'C’B’.练习与拓展1.如图,已知△ABC和点O.以O为位似中心,求作△A’B’C’和△ABC位似,且位似比为2.OA’:OA=OB’:OB=OC’:OC=2:1特殊性质在作图中的运用..注:在作图中,如无特殊说明,位似比通常代表新图形与原图形的比。k﹥1,将原图形放大,0<k<1,将原图形缩小确定位似中心画出图形确定位似比确定原图的关键点找出新图形的对应关键点思考:还有没其他作法?O.
4、ABA'C’B’C如果位似中心给定在三角形内部呢?...ACBOA'B’C’.ABA’C’B’C0以0为位似中心把△ABC缩小为原来的一半。B'A'xBAo在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1)B′(2,0)观察对应点之间的坐标的变化,你有什么发现?探索:y位似变换与平面直角坐标系A(6,3)B(6,0)..B'A'xyBAo在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,位似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)A〞B〞A〞(-2,-1),B〞(-2,0)结论
5、3:在平面直角坐标系中,以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A’的坐标为(kx,ky)或(-kx,-ky)观察对应点之间的坐标的变化,你有什么发现?A(6,3),B(6,0),xyo在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,位似比为2画它的一个位似图形.BACA′(4,6),B′(4,2),C′(12,4)放大后对应点的坐标分别是:B'A'C'探索2:2461213624还有其他的答案吗?xyoA′(-4,-6),B′(-4,-2),C′(-12,-4)B(2,1)A(2,
6、3)C(6,2)此时,位似中心0位于两图形的异侧,做题时注意审题!看清要求(其中一个,异侧,同侧等)K=2xyo例3.在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的以原点O为位似中心,位似比为1/2的位似图形.解:如图,因为0为位似中心,位似比为1/2,分别取点A′(-3,3),B′(-4,1),C′(-2,0),D′(-1,2)依次连接点A′B′C′D′就是要求作的位似图形。BACDA′B′C′D′一个C’’B’’D’’A’’xyoB1.如图表示△AOB和把它缩小后得到的△COD,求它们的相似比ACD练一
7、练:解:因为B(5,0)D(2,0),所以相似比为2:5xyo3.如图,已知矩形wxyz各点的坐标,如果矩形STUV相似于wxyz,点S的坐标为(2,2),按照下列相似比,分别写出T、U、V各点的坐标.Wxyz(2)相似比为;练一练:(1,1)(5,1)(5,4)(1,4)S(2,2)(1)相似比为41.位似图形2.位似图形的性质3.利用位似的特殊性质可以把一个图形放大或缩小小结4.有关的三个结论结论1:位似图形是相似图形的特殊情形