欢迎来到天天文库
浏览记录
ID:49582713
大小:927.50 KB
页数:32页
时间:2020-02-28
《二次根式复习.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次根式复习二次根式三个概念两个公式三个性质四种运算二次根式最简二次根式同类二次根式1、2、加、减、乘、除知识结构二次根式的概念形如(a0)的式子叫做二次根式1.二次根式的定义:2.二次根式的识别:(1).被开方数(2).根指数是2例.下列各式中那些是二次根式?那些不是?为什么?⑧⑦⑥⑤④①②③二次根式的性质(1).(2).(3).题型1:确定二次根式中被开方数所含字母的取值范围.1.当X_____时,有意义。3.求下列二次根式中字母的取值范围解得-5≤x<3解:①②说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组)≤3a=42.(2005.青
2、岛)+有意义的条件是题型2:二次根式的非负性的应用.4.已知:+=0,求x-y的值.5.已知x,y为实数,且+3(y-2)2=0,则x-y的值为()A.3B.-3C.1D.-1解:由题意,得x-4=0且2x+y=0解得x=4,y=-8x-y=4-(-8)=4+8=12D练习抢答:判断下列二次根式是否是最简二次根式,并说明理由。满足下列两个条件的二次根式,叫做最简二次根式(1)被开方数的因数是整数,因式是整式(2)被开方数中不含能开得尽方的因数或因式化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。(2)如果被
3、开方数是分数或分式时,先利用商的算术平方根的性质,将其变为二次根式相除的形式,然后利用分母有理化,将式子化简。例1:把下列各式化成最简二次根式例2:把下列各式化成最简二次根式(a≥0)(x>0)xyx2)2(2114)1(试一试:一个台阶如图,阶梯每一层高15cm,宽25cm,长60cm.一只蚂蚁从A点爬到B点最短路程是多少?251515256060AB解:B151525256060A(1)判断下列各式是否成立?你认为成立的,请在括号里打“√”,不成立的,请在括号里打“×”(2)你判断完以上各题之后,能猜想这类式子具有什么规律?(3)试用数学知识说明你所提出的猜想是正确的吗?
4、探索性练习:拓展1设a、b为实数,且
5、2-a
6、+b-2=0√拓展1设a、b为实数,且
7、2-a
8、+b-2=0√二次根式基本概念复习二次根式基本概念复习二次根式基本概念复习二次根式基本概念复习受限问题一、字母取值范围:受限问题非负数性质、因式分解及配方法二、非负数性质、因式分解及配方法:非负数性质、因式分解及配方法简变式变式运用乘法公式或因式分解巧算三、运用乘法公式或因式分解巧算:运用乘法公式或因式分解巧算运用乘法公式或因式分解巧算二次根式化简求值四、化简求值题:六、应注意的问题:运算中数的形式及化简运算顺序及符号运算顺序及符号分母有理化方法对二次根号拿进拿出5.把因式移到根号内
9、或根号外
此文档下载收益归作者所有