资源描述:
《等腰三角形性质课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、16.3.1等腰三角形肥东县第六中学黄顺琼我会做如图.把一张长方形纸片按图中的虚线对折,并剪去阴影部分,再把它(剪去阴影部分)展开,得△ABC,活动1:实践观察,认识三角形ACDBAC和AB有什么关系?这个三角形有什么特点?探索:AC=AB,这个三角形的两个边相等定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,腰腰另一条边叫做底边.底向同学们出示精美的建筑物图片腰腰底相关概念:角:等腰三角形中,两腰的夹角叫做顶角,顶角腰和底边的夹角叫做底角.底角有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,ACB腰腰底边顶角底角底角认识等腰三
2、角形另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.重合的线段重合的角和和和和和和A活动2:探索等腰三角形性质上面剪出的等腰三角形是轴对称图形吗?把剪出的等腰三角形ABC沿折痕AD对折,找出图中相等的线段和角,填入下表CDBABAC∠B∠c等腰三角形是轴对称图形.对称轴是底边上的中线(顶角平分线,底边上的高)所在直线你能发现等腰三角形有什么性质吗?说一说你的猜想.性质1:等腰三角形的两底角相等。(简写成“等边对等角”)CBA性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)∟上述是两边相等的三角形,那么若是三边都相等的三角形,它的
3、内角有什么特点?推论:等边三角形三个内角相等,每一个内角都等于60°证明性质1:等腰三角形的两个底角相等(等边对等角)。已知:△ABC中,AB=AC求证:∠B=C分析:1.如何证明两个角相等?2.如何构造两个全等的三角形?证明:在△ABC中,AB=AC,作底边BC的中线AD,在△BAD与△CAD中∵AB=___BD=___AD=___∴△BAD≌△CAD()∠B=___AC∠CCDADSSSABCD提问:这性质的条件和结论是什么?用数学符号如何表达条件和结论?活动3:等腰三角形性质定理的证明方法1:已知:△ABC中,AB=AC,AD是△ABC的中线证明性质2:等腰三角形的顶角的
4、平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)求证:AD是△ABC的高和角平分线证明:∵AD是△ABC的中线∴BD=CD在△BAD与△CAD中∵AB=ACBD=CDAD=AD∴△BAD≌△CAD(SSS)∠BAD=∠CAD;∠BDA=∠CDA∴AD是△ABC是角平分线又∵∠BDA+∠CDA=1800∴∠BDA=∠CDA=900∴AD是△ABC的高.ABCD例1已知如图16-15,在⊿ABC中,AB=AC,∠BAC=120°,点D,E是底边上两点,且BD=AD,CE=AE求:∠DAE的度数.解∵AB=AC(已知)∴∠B=∠C(等边对等角)∠B=∠C=1/2×(180
5、°-120°)=30°又∵BD=AD.()已知∴∠BAD=∠B=30°(等边对等角)同理∠CAE=∠C=30°∴∠DAE=∠BAC-∠BAD-∠CAE=120°-30°-30°=60°ABCED活动4如图(1)在等腰△ABC中,AB=AC,∠A=36°,则∠B=——∠C=—变式练习:1、如图(2)在等△ABC腰中,∠A=50°,则∠B=——,∠C=——2、如图(3)在等△ABC腰中,∠A=120°则∠B=——,∠C=——CBA图1CBA图2CAB图3活动5:反馈练习36°36°65°65°30°30°小试牛刀练习2:△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是
6、底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,图中有哪些相等的线段?练习3:在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数BACDBDCA摩拳擦掌课堂小结等腰三角形的性质等腰三角形三线合一1、求有关等腰三角形的问题,作顶角平分线、底边中线,底边的高是常用的辅助线;2、熟练掌握求解等腰三角形的顶角、底角的度数;3、掌握等腰三角形三线合一的应用。等边对等角这节课我们学习了什么?作业习题16.31、2谢谢!