欢迎来到天天文库
浏览记录
ID:49560249
大小:210.50 KB
页数:14页
时间:2020-02-28
《数学:112《弧度制》课件(1)(新人教B版必修4).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、弧度制及换算在初中几何里,我们学习过角的度量,1度的角是怎样定义的呢?周角的为1度的角。角度制引入:圆心角、弧长和半径的关系:=定值,设α=nº,弧长为l,半径OA为r,则,可以看出,等式右端不含半径,表示弧长与半径的比值跟半径无关,只与α的大小有关。结论:可用圆的弧长与半径的比值作单位去度量角。BA'OAB’定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度记作rad。这种以弧度为单位来度量角的制度叫做弧度制。注:单位rad可以略去不写。弧度制与角度制相比:(1)弧度制是以“弧度”为单位的度量角的单位制,角度制是以“度”为单位来度量角的单位制(2)1弧
2、度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是圆周的所对的圆心角的大小;1弧度≠1º(3)以弧度和度为单位的角,都是一个与半径无关的定值。弧度制与角度制的换算①零角既是0º角,又是0rad角②平角、周角的弧度数:180°=rad360°=2rad③角的弧度数的绝对值:1=1rad用弧度制表示弧长公式:弧长等于弧所对的圆心角弧度的绝对值与半径的积.①弧长公式:由公式:比公式简单.②扇形面积公式其中l是扇形弧长,R是圆的半径。证明:设扇形所对的圆心角为nº(αrad),则又αR=l,所以用弧度制表示扇形面积公式:例1.把112º30′化成弧度(用π表示
3、)。112º30′=112.5×=.例2.把化成度。例3.填写下表:角度0°30°45°60°90°120°弧度角度135°150°180°210°225°240°弧度角度270°300°315°330°360°弧度0π2π例4.扇形AOB中,所对的圆心角是60º,半径是50米,求的长l解:因为60º=,所以l=α·r=×50≈52.5.答:的长约为52.5米.例5.在半径为R的圆中,240º的中心角所对的弧长为,面积为2R2的扇形的中心角等于弧度。解:(1)240º=,根据l=αR,得(2)根据S=lR=αR2,且S=2R2.所以α=4.例6.与角-1825º
4、的终边相同,且绝对值最小的角的度数是___,合___弧度。解:-1825º=-5×360º-25º,所以与角-1825º的终边相同,且绝对值最小的角是-25º.合例7.已知一半径为R的扇形,它的周长等于所在圆的周长,那么扇形的中心角是多少弧度?扇形的面积是多少?解:周长=2πR=2R+l,所以l=2(π-1)R.所以扇形的中心角是2(π-1)rad.扇形面积是
此文档下载收益归作者所有