高三一轮复习课件(平面向量的数量积).ppt

高三一轮复习课件(平面向量的数量积).ppt

ID:49479711

大小:345.50 KB

页数:13页

时间:2020-02-25

高三一轮复习课件(平面向量的数量积).ppt_第1页
高三一轮复习课件(平面向量的数量积).ppt_第2页
高三一轮复习课件(平面向量的数量积).ppt_第3页
高三一轮复习课件(平面向量的数量积).ppt_第4页
高三一轮复习课件(平面向量的数量积).ppt_第5页
资源描述:

《高三一轮复习课件(平面向量的数量积).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考资源网你身边的高考专家要点·疑点·考点课前热身能力·思维·方法延伸·拓展误解分析平面向量的数量积要点·疑点·考点2.平面向量的数量积的运算律(1)a·b=b·a(2)(λa)·b=λ·(a·b)=a·(λ·b)(3)(a+b)·c=a·c+b·c1.平面向量的数量积的定义(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],

2、b

3、cosθ叫b在a上的投影.(2)

4、a

5、

6、b

7、cosθ叫a与b的数量积,记作a·b,即a·b=

8、a

9、

10、b

11、cosθ.(3)几何意义是:a·b等于

12、a

13、与b在a方

14、向上的投影

15、b

16、cosθ的积.3.平面向量的数量积的性质设a、b是非零向量,e是单位向量,θ是a与e的夹角,则(1)e·a=a·e=

17、a

18、cosθ(2)a⊥ba·b=0(3)a·b=±

19、a

20、·

21、b

22、(a与b同向取正,反向取负)(4)a·a=

23、a

24、2或

25、a

26、=√a·a(5)(6)

27、a·b

28、≤

29、a

30、

31、b

32、返回4.平面向量的数量积的坐标表示(1)设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,

33、a

34、2=x21+y21,

35、a

36、=√x21+y21,a⊥b<=>x1x2+y1y2=0(2)(3)设a起点(x1,y1),终

37、点(x2,y2)则1.若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于()(A)-5(B)5(C)7(D)-12.若a、b、c是非零的平面向量,其中任意两个向量都不共线,则()(A)(a)2·(b)2=(a·b)2(B)

38、a+b

39、>

40、a-b

41、(C)(a·b)·c-(b·c)·a与b垂直(D)(a·b)·c-(b·c)·a=03.设有非零向量a,b,c,则以下四个结论(1)a·(b+c)=a·b+a·c;(2)a·(b·c)=(a·b)·c;(3)a=ba·c=b·c;(4)a·b=a·b.其中正确的是

42、()(A)(1)、(3)(B)(2)、(3)(C)(1)、(4)(D)(2)、(4)课前热身ACA4.设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是()(A)2(B)0(C)1(D)-1/25.已知

43、a

44、=10,

45、b

46、=12,且(3a)·(b/5)=-36,则a与b的夹角是()(A)60°(B)120°(C)135°(D)150°DB返回能力·思维·方法【解题回顾】利用夹角公式待定n,利用垂直充要条件求c.1.已知a=(1,2),b=(-2,n),a与b的夹角是45°(1)求b;(2)若c与b同向,且c-a与a垂

47、直,求c2.已知x=a+b,y=2a+b且

48、a

49、=

50、b

51、=1,a⊥b.(1)求

52、x

53、及

54、y

55、;(2)求x、y的夹角.【解题回顾】(1)向量模的计算方法常用的有两种,一是用距离公式,一是用a2=

56、a

57、2把模的问题转化为平面向量的数量积的问题.(2)向量夹角的取值范围是[0,π].【解题回顾】本题中,通过建立恰当的坐标系,赋予几何图形有关点与向量具体的坐标,将有关几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.应深刻领悟到其中的形数结合思想.此外,题中坐标系建立的恰当与否很重要,它关系到运算的繁与简.3.如图,P是正方形ABC

58、D的对角线BD上一点,PECF是矩形,用向量法证明:(1)PA=EF;(2)PA⊥EF.返回延伸·拓展4.已知向量a=(x,x-4),向量b=(x2,3x/2),x∈[-4,2](1)试用x表示a·b(2)求a·b的最大值,并求此时a、b夹角的大小.【解题回顾】本题将向量与三次函数的最值问题溶于一体,考查知识的综合应用.返回【解题回顾】(1)是用数量积给出的三角形面积公式,(2)则是用向量坐标给出的三角形面积公式.5.在△ABC中,(1)若CA=a,CB=b,求证△ABC的面积(2)若CA=(a1,a2),CB=(b1,b2),求证:

59、△ABC的面积1.数量积作为向量的一种特殊运算,其运算律中结合律及消去律不成立,即a·(b·c)≠(a·b)·c,a·b=a·c不能推出b=c,除非是零向量.误解分析2.a⊥b的充要条件不能与a∥b的充要条件混淆,夹角的范围是[0,π],不能记错.求模时不要忘了开方,以上是造成不全对的主要原因.返回

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。