欢迎来到天天文库
浏览记录
ID:49411705
大小:2.77 MB
页数:190页
时间:2020-02-06
《回归分析概要.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第7章回归分析回归分析基本概念7.1一元线性回归分析7.2多元线性回归分析7.3非线性回归分析7.4曲线估计7.5时间序列的曲线估计7.6含虚拟自变量的回归分析7.7含虚拟自变量的回归分析7.8在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。在上一章讲述了相关分析有关内容。本章介绍回归分析基本概念,回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。7.1回归分析基本概念相关分析和回归分析都是研究变量间关
2、系的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用面不同。在回归分析中,变量y称为因变量,处于被解释的特殊地位;而在相关分析中,变量y与变量x处于平等的地位,研究变量y与变量x的密切程度和研究变量x与变量y的密切程度是一样的。在回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量;而在相关分析中,变量x和变量y都是随机变量。相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析则是侧重于考察变量之间的数量变化规律,并通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的
3、变化对另一个特定变量的影响程度。具体地说,回归分析主要解决以下几方面的问题。通过分析大量的样本数据,确定变量之间的数学关系式。对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。作为处理变量之间关系的一种统计方法和技术,回归分析的基本思想和方法以及“回归(Regression)”名称的由来都要归功于英国统计学家F·Galton(1822~1911)。在实际中,根据变量的个数、变量的类型以及变量之间
4、的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类型。7.2一元线性回归分析7.2.1统计学上的定义和计算公式定义:一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。计算公式如下。一元线性回归分析只涉及一个自变量的回归问题。设有两个变量x和y,变量y的取值随变量x取值的变化而变
5、化,则称y为因变量,x为自变量。对于这两个变量,通过观察或试验可以得到若干组数据,记为(xi,yi)(i=1,2,…,n)。将这n组数据绘成散点图,可以大致看出它们之间的关系形态。现在的问题是如何将变量之间的这种关系用一定的数学关系式表达出来。一般来说,对于具有线性相关关系的两个变量,可以用直线方程来表示它们之间的关系,即y=β0+β1+ε(7-2-1)从式(7-2-l)可以看出,随机变量y由两部分组成,一部分是其均值部分E(y)=β0+β1x(7-2-3)另一部分为随机扰动项ε。由式(7-2-3)可以得到一元线性总体回归方程y=β0+β1x(7-2-4)式(7-2
6、-4)从平均意义上表达了变量y与x的统计规律性,这一点在应用上非常重要,因为经常关心的正是这个平均值。例如,在粮食产量y与施肥量x的关系中,所关心的是当施肥量x确定后,粮食的平均产量是多少。在实际问题中,由于所要研究的现象的总体单位数一般是很多的,在许多场合甚至是无限的,因此无法掌握因变量y总体的全部取值。也就是说,总体回归方程事实上是未知的,需要利用样本的信息对其进行估计。显然,样本回归方程的函数形式应与总体回归方程的函数形式一致。通过样本数据建立一个回归方程后,不能立即就用于对某个实际问题的预测。因为,应用最小二乘法求得的样本回归直线作为对总体回归直线的近似,这
7、种近似是否合理,必须对其作各种统计检验。一般经常作以下的统计检验。(1)拟合优度检验回归方程的拟合优度检验就是要检验样本数据聚集在样本回归直线周围的密集程度,从而判断回归方程对样本数据的代表程度。回归方程的拟合优度检验一般用判定系数R2实现。该指标是建立在对总离差平方和进行分解的基础之上。R2的解释决定系数R2的大小反映了回归方程能够解释的响应变量总的变差的比例,其值越大,回归方程的拟合程度越高。一般情况下,随着预测变量个数的增大,决定系数的值也变大,因此在多重回归分析中,需要反映回归方程中预测变量的个数,即引入了调整的决定系数。(2)回归方程的显著性检验(F检
此文档下载收益归作者所有