欢迎来到天天文库
浏览记录
ID:49340401
大小:102.00 KB
页数:6页
时间:2020-02-29
《相似三角形的判定说课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2《相似三角形的判定二》说课稿(马嘶中学刘方利)今天我说课的内容是人教版初中数学九年级下册《相似三角形的判定》第二课时的内容。我将从教材分析、教法分析、学法指导、教学程序四个方面来对本课进行说明。教材分析:一、地位和作用在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义进行的的全面研究,也是学习《锐角三角函数》和《投影与视图》的重要工具,可见这部分内容在教材中具有承上启下的地位。二、教学目标知识与技能:掌握“三组对应边的比相等的两个三角形相似”的
2、判定定理,并会运用它们解决相关问题数学思考:经历探索两个三角形相似条件的过程,体验画图操作、观察猜想、分析归纳的过程;在定理论证中,体会转化思想的应用解决问题:会运用“三组对应边的比相等的两个三角形相似”的方法进行简单推理情感目标:通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发他们探索知识的兴趣,体验数学探索与创造的快乐三、重、难点重点:掌握判定定理并学会应用定理判定两个三角形相似难点:探究三角形相似的条件和运用判定定理解决问题教法分析:针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为
3、主,引导学生始终参与到学习活动的全过程中,处于主动学习的状态。学法指导这节课主要采用动手实践,自主探索与小组合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想。教学过程本课我遵循“教学、学习、探究”6同步协调的原则,教学过程将按如下流程展开:复习引入巩固练习定理应用整理小结能力拓展探索发现一、复习引入1、复习提问:我们已掌握的判定三角形相似的方法有哪些?2、回顾三角形全等的判定方法,然后教师拿出两个大小不等的,但其中一个三角形各边与另一个三角形各边的比相等的三角板,让学生来观察
4、并提问,用前面两种方法能否判定这两个三角形相似呢?学生讨论,教师点评后指出,根据定义所涉及的条件多,根据预备定理要求图形特殊,因此,我们能否探求出条件更简单的判定方法呢?引入课题。二、探索发现1、学生动手实验:⑴让学生任意画⊿ABC,再画⊿AˊBˊCˊ,使它的各边长是⊿ABC的K倍。(K值由学生自己确定)⑵让学生把画好的三角形剪下,比较它们的对应角相等吗?这两个三角形相似吗?学生动手操作,教师巡回指导,启发点拨。在小组合作基础上,讨论交流,可能得出下面结论:同学之间虽然取K值不一样,做的不一样,但是两个三角形的形状一样,是相似的。此时,教师鼓励学生大胆猜想,得出命题:“如
5、果两个三角形的三组边的比相等,那么这两个三角形相似”[设计意图:6安排学生对三角形的画、剪、拼,让学生动起来,在活动中探索,在活动中学习,符合学生的身心特征和认知规律。通过学生观察实验,探索猜想,让学生参与到学习过程中,可以优化学习环境,激发学习兴趣,培养学生动手实践能力,提高直觉思维,发展创新能力。]2、分析论证1)提问:我们通过实验操作得到的猜想在任意情况下都成立吗?让学生体会到:需要证明进而让学生画出图形,写出已知、求证。已知:如图ΔA'B'C'和ΔABC中,求证:ΔA'B'C'∽ΔABC。(2)分析思路:写完已知、求证后,放手让学生探寻证明思路。可能出现以下问题:
6、问题1:我们证明这两个三角形相似的思路是什么呢?由于学生能用的只有定义或预备定理,因此思路容易受阻。思维受阻时,请学生再演示拼置的方法:把ΔA'B'C'移到ΔABC上来。由学生发现证明的思路。问题2:怎样用几何语言表述“把ΔA'B'C'移到ΔABC上来”并证明ΔA'B'C'∽ΔABC呢?学生在独立思考的基础上,小组讨论交流,让学生随时展示自己的想法,可能得出下面的证法:⑴①在AB上截取AD=A’B’,过点D做DE∥BC交AC于点E得⊿ADE∽⊿ABC②再证⊿ADE≌⊿A’B’C’③据第①②得出⊿A’B’C’∽⊿ABC⑵①在AC上截取AE=A’C’,过点E做DE∥BC交AB
7、于点D得⊿ADE∽⊿ABC②再证⊿ADE≌⊿A’B’C’③据第①②得出⊿A’B’C’∽⊿ABC同学们找到了猜想证明方法,如果你还能从不同角度研究,或许还有新的方法。下面请大家选一种你喜欢的证法,写出证明过程。从而得到6判定定理1:“如果两个三角形的三组边的比相等,那么这两个三角形相似”符号语言:在△ABC和△A’B’C’中,∴△ABC∽△A’B’C’(三边对应成比例,两三角形相似)[设计意图:①借助直观演示,突破定理证明这一难点。②抓住学生在分析中出现的问题进行点拨,分散难点,抓住关键。③放手让学生自主探索,从不同角度添加辅助
此文档下载收益归作者所有