函数奇偶性练习题(内含答案).doc

函数奇偶性练习题(内含答案).doc

ID:49256878

大小:83.00 KB

页数:5页

时间:2020-03-01

函数奇偶性练习题(内含答案).doc_第1页
函数奇偶性练习题(内含答案).doc_第2页
函数奇偶性练习题(内含答案).doc_第3页
函数奇偶性练习题(内含答案).doc_第4页
函数奇偶性练习题(内含答案).doc_第5页
资源描述:

《函数奇偶性练习题(内含答案).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、..函数奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(x)=f(-x)那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。(2)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。奇偶函数图像的特征  定理奇函数图像关于原点成中心对称图形,偶函数的图像关于y轴成轴对称图形。  f(x)为奇函数<=>f(x)的图像关于原点对称  点(x,y)→(-x,-y)  f(x)为偶函数<=>f(x)的图像关于Y轴对称  

2、点(x,y)→(-x,y)  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。性质  1、偶函数没有反函数(偶函数在定义域内非单调函数),奇函数的反函数仍是奇函数。  2、偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义内关于原点对称的两个区间上单调性相同。  3、奇±奇=奇偶±偶=偶奇X奇=偶偶X偶=偶奇X偶=奇(两函数定义域要关于原点对称)  4、对于F(x)=f[g(x)]:若g(x)是偶函数,则F[x]是偶函数  若g(x)奇函数且f(x

3、)是奇函数,则F(x)是奇函数  若g(x)奇函数且f(x)是偶函数,则F(x)是偶函数  5、奇函数与偶函数的定义域必须关于原点对称.下载可编辑...  一、选择题1.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx(  )  A.奇函数    B.偶函数   C.既奇又偶函数    D.非奇非偶函数2.已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则(  )   A.,b=0    B.a=-1,b=0  C.a=1,b=0     D.a=3,b=03.

4、已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是(  )   A.y=x(x-2)   B.y=x(|x|-1) C.y=|x|(x-2)  D.y=x(|x|-2)4.已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于(  )  A.-26    B.-18    C.-10    D.105.函数是(  )  A.偶函数   B.奇函数    C.非奇非偶函数    D.既是奇函数又是偶函数6.若,g(x)都是奇函数,在(0,+∞)上有最大值5,则f(x)在(

5、-∞,0)上有(  )    A.最小值-5    B.最大值-5   C.最小值-1      D.最大值-3二、填空题7.函数的奇偶性为________(填奇函数或偶函数) .8.若y=(m-1)x2+2mx+3是偶函数,则m=_________.9.已知f(x)是偶函数,g(x)是奇函数,若,则f(x)的解析式为_______.10.已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)=0的所有实根之和为________.三、解答题11.设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-

6、m)<f(m),求实数m的取值范围..下载可编辑...12.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(xR,yR),且f(0)≠0,试证f(x)是偶函数.13.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R上的表达式.14.f(x)是定义在(-∞,-5][5,+∞)上的奇函数,且f(x)在[5,+∞)上单调递减,试判断f(x)在(-∞,-5]上的单调性,并用定义给予证明.  15.设函数y=f(x)(xR且x≠0)对任意非零实数x1、x2满足f(x1·x2)=f(x1)

7、+f(x2),求证f(x)是偶函数..下载可编辑...函数的奇偶性练习参考答案1. 解析:f(x)=ax2+bx+c为偶函数,为奇函数,  ∴g(x)=ax3+bx2+cx=f(x)·满足奇函数的条件.  答案:A 2.解析:由f(x)=ax2+bx+3a+b为偶函数,得b=0.  又定义域为[a-1,2a],∴a-1=2a,∴.故选A.3.解析:由x≥0时,f(x)=x2-2x,f(x)为奇函数,  ∴当x<0时,f(x)=-f(-x)=-(x2+2x)=-x2-2x=x(-x-2).  ∴即f(x)=x(

8、x

9、-2)  答案:D

10、4.解析:f(x)+8=x5+ax3+bx为奇函数,  f(-2)+8=18,∴f(2)+8=-18,∴f(2)=-26.  答案:A5.解析:此题直接证明较烦,可用等价形式f(-x)+f(x)=0.  答案:B6.解析:、g(x)为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。