欢迎来到天天文库
浏览记录
ID:49253472
大小:1.42 MB
页数:22页
时间:2020-02-02
《SLAM_介绍以及浅析.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、对于SLAM的认识SimultaneousLocalizationandMapping即时定位与地图构建SLAM指的是机器人在自身位置不确定的条件下,在完全未知环境中创建地图,同时利用地图进行自主定位和导航。SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和传感器数据进行自身定位,同时建造增量式地图。SLAM(SimultaneousLocalizationAndMapping)中文称“同步定位及建图”是目前在机器人定位方面的热门研究课题。到目前为止,也取得了不
2、少进展。定位(localization):机器人必须知道自己在环境中位置。建图(mapping):机器人必须记录环境中特征的位置(如果知道自己的位置)SLAM:机器人在定位的同时建立环境地图其基本原理是运过概率统计的方法,通过多特征匹配来达到定位和减少定位误差的。基本的SLAM应用的kalmanfilter。Sk表示传感器测试获取数据,Mk-1表示第K-1时刻的局部地图,Rk表示K时刻机器人的位姿。SLAM问题包括四个基本方面1) 如何进行环境描述,即环境地图的表示方法;2) 怎样获得环境信息,机器人在
3、环境中漫游并记录传感器的感知数据,这涉及到机器人的定位与环境特征提取问题;3) 怎样表示获得的环境信息,并根据环境信息更新地图,这需要解决对不确定信息的描述和处理方法;4) 发展稳定、可靠的SLAM方法。SLAM的相关理论与关键技术(TheoriesandtechnologiesofSLAM)该领域所涉及的关键性问题可以归结为:(1)地图的表示方式(大致可分为3类:栅格表示、几何特征表示和拓扑图表示)(2)不确定性信息处理方法------不确定性信息处理必须解决以下问题:·在地图和位置的表示中,如何描述
4、运动和感知信息的不确定性?·在迭代过程中,如何处理旧信息与新信息的关系,连续更新地图与位置?·如何依据不确定的信息进行决策?(3)数据的关联;(为了获得全局的环境地图和实现定位,还需要将不同时间、不同地点的感知信息进行匹配和联合,存在局部数据之间的关联问题,也存在局部数据与全局数据的关联与匹配问题)(4)自定位;(移动机器人的定位按照有无环境地图可以分为基于地图的定位和无地图的定位)(5)探索规划(主要目的是提高地图创建的效率,使机器人在较短的时间内感知范围覆盖尽可能大的区域,在这方面的研究成果较少)环
5、境的描述--地图目前各国研究者已经提出了多种表示法,大致可分为三类:栅格表示、几何信息表示和拓扑图表示,每种方法都有自己的优缺点。栅格地图表示法即将整个环境分为若干相同大小的栅格,对于每个栅格各指出其中是否存在障碍物。这种方法最早由Elfes和Moravec提出,而后Elfes进行了进一步的研究。优点是(1)创建和维护容易,(2)尽量保留了整个环境的各种信息,(3)借助于该地图,可以方便地进行自定位和路径规划。缺点在于:当栅格数量增大时(在大规模环境或对环境划分比较详细时),对地图的维护行为将变得困难,
6、同时定位过程中搜索空间很大,如果没有较好的简化算法,实现实时应用比较困难。几何信息地图表示法是指机器人收集对环境的感知信息,从中提取更为抽象的几何特征,例如线段或曲线,使用这些几何信息描述环境。该表示法更为紧凑,且便于位置估计和目标识别。几何方法利用卡尔曼滤波在局部区域内可获得较高精度,且计算量小,但在广域环境中却难以维持精确的坐标信息。几何信息的提取需要对感知信息作额外处理,且需要一定数量的感知数据才能得到结果。拓扑地图抽象度高,特别在环境大而简单时。这种方法将环境表示为一张拓扑意义中的图(graph
7、),图中的节点对应于环境中的一个特征状态、地点。如果节点间存在直接连接的路径则相当于图中连接节点的弧。优点是:(1)有利于进一步的路径和任务规划,(2)存储和搜索空间都比较小,计算效率高,(3)可以使用很多现有成熟、高效的搜索和推理算法。缺点在于对拓扑图的使用是建立在对拓扑节点的识别匹配基础上的,如当环境中存在两个很相似的地方时,拓扑图方法将很难确定这是否为同一点。SLAM中定位与环境特征提取移动机器人自定位与环境建模问题是紧密相关的。环境模型的准确性依赖于定位精度,而定位的实现又离不开环境模型。在未知
8、环境中,机器人没有什么参照物,只能依靠自己并不十分准确的传感器来获取外界信息,如同一个盲人在一个陌生环境中摸索的情况。这种情况下,定位是比较困难的。有地图的定位和有定位的地图创建都是容易解决的,但无地图的定位和未解决定位的地图创建如同"鸡--蛋"问题,无从下手。已有的研究中对这类问题的解决方法可分为两类:一类利用自身携带的多种内部传感器(包括里程仪、罗盘、加速度计等),通过多种传感信息的融合减少定位的误差,使用的融合算法多为基于卡尔曼滤波的
此文档下载收益归作者所有