欢迎来到天天文库
浏览记录
ID:49100399
大小:16.21 KB
页数:8页
时间:2020-02-28
《数形结合课题结题报告.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、“数形结合”思想在小学数学教学中应用的研究龙游县塔石镇中心小学课题组负责人:黄秀清成员:徐根郑素莹柴巧云郑丽萍一、课题的现实背景与意义(一)课题研究的现实背景众所周知数与形这两个基本概念,是数学的两块基石,可以说全部数学大体上都是围绕这两个基本概念的提炼、演度、发展而展开的,在数学发展进程中,数和形常常结合一起,在内容上互相联系,在方法上互相渗透,在一定的条件下互相转化。数与形的内在联系,也使许多代数学和数学分析的课题具有鲜明的直观性,而且往往由于借用了几何术语或运用了与几何的类比从而开拓了新的发展方向,例如,线性代数正是借用了几何中的空间,线性等概念与类比方法,把自己充实起来,从而获
2、得了迅猛的发展。数学学习,不单纯是数的计算与形的研究,其中贯穿始终的是数学思想和数学方法。其中,“数形结合”无疑是比较重要的一种。“数”与“形”既是数学的两个基本概念,也是数学学习的两个重要基础,它们分别发展的同时又互相渗透、互相启发着,共同推动着数学科学的向前发展。(二)研究本课题的现实意义在现实世界中,数与形是不可分离地结合在一起的,这是直观与抽象相结合、感知与思维相结合的体现。数与形相结合不仅是数学自身发展的需要,也是加深对数学知识的理解、发展智力、培养能力的需要。从表面上看来,中学数学内容可分为数与形两大部分,中学代数是研究数和数量的学科,中学几何是研究形和空间形式的学科,中学
3、解析几何是把数和形结合起来研究的学科,实际上,在小学数学教学中都渗透了数与形相结合的内容。著名数学家华罗庚指出:“数缺形时少直观,形缺数时难入微”,作为数学老师,应能认识到数形结合的思想所表现出来的思路上的灵活,过程上的简便。在小学阶段,虽然属于数学的起步阶段,但笔者认为渗透“数形结合”的意义有以下几点。首先,懂得“数形结合”的方法就能更好地理解和掌握数学内容。第二,懂得“数形结合”的方法有利于记忆。学生懂得“数形结合”的数学思想方法后,对于小学数学知识的理解性记忆是非常有益的。第三,懂得“数形结合”的方法有利于数学能力的提高。如果小学数学教师在教学中注重“数形结合”思想的渗透,那么,
4、就能使学生学会正确思维的方法,从而促进学生数学能力的提高。第四,“数形结合”的方法是联结小学数学和中学数学的一条红线。布鲁纳认为:“强调结构和原理的学习,能够缩小‘高级’知识和‘初级’知识之间的间隙。”一般地讲,小学数学和中学数学的界限还是比较清楚的,小学数学中有许多概念在中学数学中要赋予新的涵义。而在中学数学中全部保留下来的内容只有小学数学思想方法及与之有关的内容,而“数形结合”是其中重要的方法之一。因此,小学数学思想方法是贯穿小学数学和中学数学的一条纽带,“数形结合”更是连接小学数学与中学数学的一条红丝带。二、国内外关于同类课题的研究综述早在数学荫牙时期,人们在度量长度、面积和体积
5、的过程中,就把数和形结合起来了。早在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形中的几何关系表达成代数式之间的代数关系,17世纪上半时,法国数学家笛卡几通过坐标系建立了数与形之间的联系,创立了解析几何学,后来,几何学中许多长期不得解决的问题,如尺规作图三大不能问题等,最终也是借助于代数方法得到完满的解决。近来,在中学数学教学中研究得很多也比较透彻。虽然“数形结合”思想在小学数学教学中应用的研究还是很少,并且也不透彻。但其思想在中学数学教学中应用研究的经验与借鉴为本项课题研究打下了良好的基础。三、课题研究的理论依据思维是人脑对客观现实间接、概
6、括的反映,反映的是事物的本质和内在的规律性,是人类认识的高级阶段。思维实现着从现象到本质、从感性到理性的转化,使人达到对客观事物的理性认识。人们通过思维,可以更深刻地把握事物,预见事物的发展进程和结果。小学生的思维是其智力的核心部分,小学生思维的发展,是其智力发展的标志和缩影。发展小学生的智力,主要应培养和训练他们的思维能力。小学生的思维特点是:由形象思维逐步向抽象逻辑思维过渡,但这种抽象逻辑思维仍带有很强的具体形象性。尽管孩子的抽象思维在逐步发展,但是仍然具有很大成分的具体形象性.。因此,把比较抽象的几何定理与代数公式硬塞给小学生,一般说来,不易被接受。然而,从小学三、四年级以后,有
7、意识地培养孩子的思维能力,更快地提高他们的思维水平却是可能的。数学是一门逻辑性、系统性很强的学科,前面知识的学习,往往是后面有关知识的孕伏和基础,在新旧知识的联系上是非常紧密的。长期以来,由于人们忽视了形象思维在教学过程中的作用,使学科知识的理解过程脱离了学科思维方式的特点,使知识难以理解。为了培养更聪明和富有创造力的新一代,在教学中,不可忽视对学生的形象思维与逻辑思维的共同开发。四、课题界定“数形结合”是中学数学中比较重要的一种思想方法,其实
此文档下载收益归作者所有