欢迎来到天天文库
浏览记录
ID:49058619
大小:14.94 KB
页数:3页
时间:2020-02-27
《意外教学案例.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、意外教学案例初四第二章第七节讲的是二次函数与一元二次方程。主要讲了两个方面问题:一是用方程的方法研究二次函数图象与x轴交点个数以及交点求法问题;二是用图象的方法求方程的近似根问题。其实,这两个问题本质是一样的,就是用数形结合的方法解决问题。在讲完知识后,学士提出还是不能熟练掌握,我一询问,发现还是大部分同学普遍的问题。所以,我随即改变了教学内容,为了训练学生领会并运用数形结合的思想方法解决问题,我又着重安排三个训练学生数形结合思想的题型,通过训练使学生进一步理解数形结合的思想,掌握运用的方法。例1:当x为何值时,不等式x2+5x−6>0成立? 先让学生自己解,多数学生试图类比解方
2、程的方法去解解不等式,得出错误结果。引导学生分析错误原因之后,提示学生,这个问题与我们正在学习的二次函数有什么联系?能否借助函数图象解决这个问题?仅这一句话,就让学生恍然大悟。教师点评:此题最好的方法是利用二次函数图象解决,先求出抛物线y=x2+5x−6与x轴的两个交点,画出抛物线草图,很易在图像上观察出当x<-6或x>1时不等式成立。例2:已知二次函数y=x2+2mx+m-7与x轴的两个交点在点(1,0)两侧,判断关于x的方程 1/4x2+(m+1)x+m2+5=0的根情况。此题有一定的难度,学生能想到解决此题的关键是由y=x2+2mx+m-7判断m的范围,但是怎样求m的范围成
3、了难点。个别学生想到利用根与系数关系,因为与x轴的两个交点在点(1,0)两侧,所以一个根大于1,一个根小于1,由此得知m必须满足不等式(x1-1)(x2-1)<0.由此解不等式可求m的范围,虽说能求,但是确实不易想到,并且还要用到许多方程的知识。教师提示:利用数形结合的方法,根据已知条件画出抛物线y=x2+2mx+m-7的草图,再结合图象去观察,你能有什么发现呢?学生结合图象发现,y=x2+2mx+m-7的开口向上,两个交点在点(1,0)两侧,说明x=1时y<0,即1+2m+m-7<0,则m<2。那么,关于x的一元二次方程的判别式:△=(m+1)2-(m2+5)=2(m-2)<0
4、,方程无实根。简便的方法使学生对数形结合的数学思想更感兴趣。我又给出第三题。例3:判断方程–x2+5x-2=2/x的正根的个数这时,那些思维快的同学很快得出结论:如果按一般的方法去分母,将会出现一元三次方程,解起来非常困难,如果运用函数的思想,把它们看作是求二次函数图像与反比例函数图像的交点问题,利用函数图象解就非常轻松了。把左边的二次函数y=–x2+5x-2,可知顶点在第一象限,右边看做反比例函数y=2/x图象也在第一、三象限,并且两个图象在第一象限有两个交点,所以方程有两个正根。感悟:数形结合是初中数学的一个重要方法,通过一定训练使学生领会其中的思想并能根据问题的特点灵活、巧
5、妙地运用,对提高学生综合能力非常有益。在课堂上,教师面对的是一群有着不同生活经历、有自己的想法,在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片断中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了,碰上这样的意外,教师采取了生硬的处理方式,让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我
6、相信你还是个爱思考的学生!然后让他和大家一道埃手操作、探索、验证中位线为什么会具有这们的性质,课堂效果应该更好。
此文档下载收益归作者所有