《二次函数的应用3》课件2.ppt

《二次函数的应用3》课件2.ppt

ID:49021507

大小:264.50 KB

页数:10页

时间:2020-01-29

《二次函数的应用3》课件2.ppt_第1页
《二次函数的应用3》课件2.ppt_第2页
《二次函数的应用3》课件2.ppt_第3页
《二次函数的应用3》课件2.ppt_第4页
《二次函数的应用3》课件2.ppt_第5页
资源描述:

《《二次函数的应用3》课件2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的应用例1.某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是.此时只需抛物线上的一个点就能求出抛物线的函数关系式.AB解:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线

2、上,将它的坐标代入,得所以因此,函数关系式是BA问题2一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m.这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?例3如图所示,公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷

3、出的水流不落到池外?OA根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致于落到池外.解:(1)建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).当y=0时,可求得点C的坐标为(2.5,0)同理,点D的坐标为(-2.5,0)设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25xyOA●B(1,2.25)●(0,1.25)●C(2.5,0)●D(-2.5,0)如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2

4、m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.xy-1-3-1-31313O练习:1.有一抛物线拱桥,已知水位在AB位置时,水面的宽度是m,水位上升4m就达到警戒线CD,这时水面宽是米.若洪水到来时,水位以每小时0.5m速度上升,求水过警戒线后几小时淹到拱桥顶端M处.ONMCDABxy2.一场篮球赛中,球员甲跳起投篮,

5、如图2,已知球在A处出手时离地面20/9m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.①问此球能否投中?②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。