欢迎来到天天文库
浏览记录
ID:48994020
大小:519.48 KB
页数:8页
时间:2020-02-26
《复合函数和定义域.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、复合函数的定义域和解析式一、复习引入:⑴已知,则.⑵已知与分别由下表给出,1234123423412143那么.⑶已知函数,①求;②若函数求.变题:已知函数,,求:①;②;③的定义域;④.⑷已知函数,,求.点评:二、新授知识:1、复合函数的定义设是到的函数,是到上的函数,且,当取遍中的元素时,取遍,那么就是到上的函数。此函数称为由外函数和内函数复合而成的复合函数。说明:⑴复合函数的定义域,就是复合函数中的取值范围。⑵称为直接变量,称为中间变量,的取值范围即为的值域。⑶与表示不同的复合函数。例1.设函数,求.⑷若的定
2、义域为,则复合函数中,.注意:的值域.例2.(课时练2例1)⑴若函数的定义域是[0,1],求的定义域;⑵若的定义域是[-1,1],求函数的定义域;⑶已知定义域是,求定义域.点评:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的.解答:⑴ 函数是由A到B上的函数与B到C上的函数复合而成的函数.函数的定义域是[0,1],∴B=[0,1],即函数的值域为[0,1].∴,∴,即,∴函数的定义域[0,].⑵ 函数是由A到B上的函数与B到C上的函数复合而成的函数.的定义域是[-1,1],∴A=[-
3、1,1],即-1,∴,即的值域是[-3,1],∴的定义域是[-3,1].点评:若已知的定义域为,则的定义域就是不等式的的集合;若已知的定义域为,则的定义域就是函数的值域。⑶ 函数是由A到B上的函数与B到C上的函数复合而成的函数.的定义域是[-4,5),∴A=[-4,5)即,∴即的值域B=[-1,8)又是由到上的函数与B到C上的函数复合而成的函数,而,从而的值域∴∴∴∴的定义域是[1,).例3.已知函数定义域是(a,b),求的定义域.解:由题,,, 当,即时,不表示函数;当,即时,表示函数,其定义域为.说明:① 已
4、知的定义域为(a,b),求的定义域的方法:已知的定义域为,求的定义域。实际上是已知中间变量的的取值范围,即,。通过解不等式求得的范围,即为的定义域。② 已知的定义域为(a,b),求的定义域的方法:若已知的定义域为,求的定义域。实际上是已知直接变量的取值范围,即。先利用求得的范围,则的范围即是的定义域。2.求有关复合函数的解析式例4.①已知求;②已知,求.例5.①已知,求;②已知,求.点评:已知求复合函数的解析式,直接把中的换成即可。已知求的常用方法有:配凑法和换元法。配凑法就是在中把关于变量的表达式先凑成整体的表达
5、式,再直接把换成而得。换元法就是先设,从中解出(即用表示),再把(关于的式子)直接代入中消去得到,最后把中的直接换成即得。例6.①已知是一次函数,满足,求;②已知,求.点评:⑴当已知函数的类型求函数的解析式时,一般用待定系数法。⑵若已知抽象的函数表达式,则常用解方程组、消参的思想方法求函数的解析式。已知满足某个等式,这个等式除是未知量外,还出现其他未知量,如、等,必须根据已知等式再构造出其他等式组成方程组,通过解方程组求出。三、课堂练习:1.已知,求和.解:令,设,令,设,.2.已知,求.分析:是用替换中的而得到的
6、,问题是用中的替换呢,还是用替换呢?所以要按、分类;注:是用替换中的而得到的,问题是用替换中的呢,还是替换呢?所以要看还是,故按、分类。Key:;注:。四、课堂小结:1.复合函数的定义;设函数,,则我们称是由外函数和内函数复合而成的复合函数。其中被称为直接变量,被称为中间变量。复合函数中直接变量的取值范围叫做复合函数的定义域,中间变量的取值范围,即是的值域,是外函数的定义域。2.有关复合函数的定义域求法及解析式求法:⑴定义域求法:求复合函数的定义域只要解中间变量的不等式(由解);求外函数的定义域只要求中间变量的值域
7、范围(由求的值域)。已知一个复合函数求另一个复合函数的定义域,必须先求出外函数的定义域。⑵解析式求法:待定系数法、配凑法、换元法、解方程组消元法.五、附录:求函数的定义域的主要依据有:⑴当为整式或奇次根式时,R;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。⑹分段函数的
8、定义域是各段上自变量的取值集合的并集。⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。⑼对数函数的真数必须大于零,底数大于零且不等于1。⑽三角函数中的切割函数要注意对角变量的限制。
此文档下载收益归作者所有