欢迎来到天天文库
浏览记录
ID:48957910
大小:31.50 KB
页数:3页
时间:2020-02-26
《高中数学教学与信息技术整合案例.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学教学与信息技术整合案例函数y=Asin(ωx+φ)的图象 [教学目标] 1.会用电脑作图:函数y=Asinx,y=sinωx与y=sin(x+φ). 2.通过观察了解函数y=Asinx,y=sinωx,y=sin(x+φ)与y=sinx的关系. 3.使学生进一步认识一般与特殊可转化的数学思想. [教学重点] 函数y=Asinx,y=sinωx,y=sin(x+φ)与y=sinx的关系. [教学环境] 多媒体教室(每人一台电脑) [学生特点分析] 学生已掌握使用电脑软件 [教材内容分析] 本节内容为函数y=Asin(
2、ωx+φ)的图象,属数形结合问题. [信息技术要求分析] 利用电脑动画直观易解“数形问题” [信息技术使用方式分析] 使用课件y=asin(bx+c)演示 由y=sinx转化为y=asinx(令b=1,c=0) y=sinbx(令a=1,c=0) y=sin(x+c)(令a=1,b=1) [教学过程] 1.新课导入 在实际生活中,我们经常会遇到形如y=Asin(ωx+φ)的函数解析式,本节课我们来讨论它的图象. 2.新授课 y=Asinx,y=sinωx,y=sin(x+φ)的画法 例1.作函数图象
3、:y=2sinx,x∈R;,x∈R.(教师指导下,学生电脑作图象) 师:请同学们观察它们与y=sinx的关系. 生答: 小结:一般地,函数y=Asinx,x∈R(其中A>0,A≠1)可以看作把正弦曲线y=sinx上所有点的纵坐标伸长(A>1)或缩小(0<A<1)到原来的A倍(横坐标不变)而得到的,A称为振幅,这一变换称为振幅变换. 例2.作函数图象:y=sin2x,x∈R;,x∈R.(教师指导下,学生电脑作图象) 师:请同学们观察,它们与y=sinx的关系. 生答: 小结:一般地,函数y=sinωx,x∈R(ω>0,ω≠1)的图象,可以
4、看作把y=sinx,x∈R,图象上所有点的横坐标缩小(ω>1)或伸长(0<ω<1)到原来的倍(纵坐标不变)而得到的,ω决定函数的周期,这一变换称为周期变换. 例3.作出函数图象:,x∈R;,x∈R.(教师指导下,学生电脑作图象) 师:请同学们观察它们与y=sinx的关系. 生答: 小结:一般地,函数y=sin(x+φ),x∈R(φ≠0)的图象,可以看作把y=sinx,x∈R图象上所有点向左(φ>0)或向右(φ<0)平行移动φ个单位长度而得到的,φ通常叫初相,这一变换称相位变换. 师:归纳本节学习内容 3.随堂练习 (电脑)作出下列函数图
5、象:课后习题(1)~(6) 师:巡视(与学生交流) 师:对学生学习效果,给出积极评价(过程性) 4.课后作业 (电脑)作出下列函数图象:(7)(8) 5.板书设计4.9*函数y=Asin(ωx+φ)的图象 y=Asin(ωx+φ) 例1 A、ω、φ实际意义 例2 例3 [跋]通过对比,可以看出,由于手段的限制“普通本”只用“描点法”作出y=Asin(ωx+φ)的图象,接着看图观察它与y=sinx坐标之变化,再给出一般性结论。而在“整合”的要求下,需要引导学生用信息技术完成函数图象的绘制,并在信息技术环
6、境下动态观察图象,形成从正弦曲线y=sinx转化为y=Asin(ωx+φ)的感性认识,再让学生自由选择A、ω、φ.再观察图象之变化.在此过程中,学生可以清楚地看到系数A、ω、φ在这个转化中的作用.
此文档下载收益归作者所有