欢迎来到天天文库
浏览记录
ID:48946656
大小:110.50 KB
页数:2页
时间:2020-02-26
《二次根式的化简技巧.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、化简二次根式的技巧化简二次根式是进行二次根式加减运算的基础,只有把二次根式化简了,才能进行二次根式的加减运算.在化简时,要根据被开方数的不同特征,采取不同的化简策略.下面举例说明.一、被开方数为整数当被开方数为整数时,应先对整数分解质因数,然后再开方.例1.化简:.分析:由于12是整数,在化简时应先将12分解为12=4×3=×3.解:原式=.二、被开方数是小数当被开方数是小数时,应先将小数化成分数,再进行开方.例2.化简:.分析:由于0.5是一个小数,因此在化简时,先将0.5化成,然后再利用二次根式的性质进行化简.解:原式=.三、被开方数是带分数当被开方数
2、是带分数时,应先化为假分数再进行开方.例3.化简:.分析:因为是带分数,不能直接进行开方运算,因此应先将带分数化为假分数后,再根据二次根式的性质进行化简.解:原式=.四、被开方数为数的和(或差)形式当被开方数为数和(或差)的形式时,应先计算出其和(或差),再进行开方.例4.化简:.分析:观察被开方数的特点是两个数的平方的和的形式,一定不能直接各自开方得,而应先计算被开方数,然后再进行开方运算.解:原式=.五、被开方数为单项式当被开方数是单项式时,应先将被开方数写成平方的形式(即将单项式写成或·的形式),然后再开方.例5.化简:.分析:由于是一个单项式,因此
3、应先将分解为的形式,然后再进行开方运算.解:原式=.六、被开方数是多项式当被开方数是多项式时,应先把它分解因式再开方.例6.化简:.分析:由于是一个多项式,因此应先将分解因式后再开方,切莫直接各自开方得.解:原式=.七:被开方数是分式当被开方数是分式时,应先将这个分式的分母化成平方的形式,然后再进行开方运算.例7.化简:.分析:由于是一个分式,可根据分式的基本性质,将的分子、分母同乘以,将分母转化为平方的形式,然后再进行开方运算,将二次根式化简.解:原式=.八、被开方数是分式的和(或差)当被开方数是分式的和(或差)的形式时,应先将它通分,然后再化简.例8.
4、化简:.分析:由于被开方数是,是两个分式的和的形式,因此需先通分后再化简.解:原式=.通过以上各例可以看出,把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.
此文档下载收益归作者所有