能得到直角三角形吗(1).doc

能得到直角三角形吗(1).doc

ID:48927468

大小:47.50 KB

页数:2页

时间:2020-02-25

能得到直角三角形吗(1).doc_第1页
能得到直角三角形吗(1).doc_第2页
资源描述:

《能得到直角三角形吗(1).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2能得到直角三角形吗教学目的知识与技能:掌握直角三角形的判别条件,并能进行简单应用;教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观:敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.重点、难点重点:探索并掌握直角三角形的判别条件。难点:运用直角三角形判别条件解题教学过程一、创设情境,激发学生兴趣、导入

2、课题展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作。甲:同时握住绳子的第一个结和第十三个结。乙:握住第四个结。丙:握住第八个结。拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。问:发现这个角是多少?(直角。)展示投影1。(书P9图1—10)教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?(3、4、5),这三边满足了哪些条件?(),是不是只有三边长为3、4、5的三角形才可以成为直角三角形呢?现在请同学们做一做。二、做一做下面的三组数分别是一个三角形的三边a、b、c。5、12、137、24

3、、258、15、171、这三组数都满足吗?同学们在运算、交流形成共识后,教师要学生完成。2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?同学们在在形成共识后板书:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形。满足的三个正整数,称为勾股数。大家可以想这样的勾股数是很多的。今后我们可以利用“三角形三边a、b、c满足时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。三、讲解例题例1一个零件的形状如图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DC=1

4、2,BC=13,这个零件符合要求吗?分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC是否为直角三角形,这样勾股定理的逆定理即可派上用场了。解:在△ABD中,所以△ABD为直角三角形∠A=90°在△BDC中,所以△BDC是直角三角形∠CDB=90°因此这个零件符合要求。四、随堂练习:⒈下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是最大角.⒊四边形ABCD中已知AB=3,

5、BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3五、读一读P11勾股数组与费马大定理。⒈直角三角形判定定理:如果三角形的三边长a,b,c六、小结:1、满足a2+b2=c2,那么这个三角形是直角三角形.2、满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.六、作业1、课本P121.31、2、3。教学反思:这是勾股定理的逆应用。大部分的同学只要能正确掌握勾股定理的话,都不难理解。当然勾股定理的理解掌握是关键。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。