线性代数04-1-习题课.ppt

线性代数04-1-习题课.ppt

ID:48889301

大小:2.20 MB

页数:52页

时间:2020-01-31

线性代数04-1-习题课.ppt_第1页
线性代数04-1-习题课.ppt_第2页
线性代数04-1-习题课.ppt_第3页
线性代数04-1-习题课.ppt_第4页
线性代数04-1-习题课.ppt_第5页
资源描述:

《线性代数04-1-习题课.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、把个不同的元素排成一列,叫做这个元素的全排列(或排列).个不同的元素的所有排列的种数用表示,且   .1 全排列逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列.在一个排列中,若数,则称这两个数组成一个逆序.一个排列中所有逆序的总数称为此排列的逆序数.2 逆序数分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,每个元素的逆序数之总和即为所求排列的逆序数.方法2方法1分别计算出排在前面比它大的数码之和,即分别算出这个元素的逆序数,这 个元素的逆序数之总和即为所求排列的逆序数.3 计算排列逆序数的方法定义在排列中,将任意两个元素对调,

2、其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换.定理一个排列中的任意两个元素对换,排列改变奇偶性.推论奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数.4 对 换5n阶行列式的定义6n阶行列式的性质1)余子式与代数余子式7 行列式按行(列)展开2)关于代数余子式的重要性质8 克拉默法则克拉默法则的理论价值定理定理定理定理一、计算排列的逆序数二、计算(证明)行列式三、克拉默法则典 型 例 题1 用定义计算(证明)例2用行列式定义计算二、计算(证明)行列式解评注本例是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能取到的值,并注意每

3、一项的符号,这是用定义计算行列式的一般方法.注意2 利用范德蒙行列式计算例3计算利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。解上面等式右端行列式为n阶范德蒙行列式,由范德蒙行列式知评注本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式.3 用化三角形行列式计算例4计算解提取第一列的公因子,得例5计算解评注本题利用行列式的性质,采用“化零”的方法,逐步将所给行列式化为三角形行

4、列式.化零时一般尽量选含有1的行(列)及含零较多的行(列);若没有1,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数化为1;若所给行列式中元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的.4 用降阶法计算例6计算解评注本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次,行列式的阶数可降低1阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式).这种方法对阶数不高的数字行列式比较适用.5用递推法计算例8计算解由此递推,得如此继续下去,可得评注6用数学归

5、纳法例9证明证对阶数n用数学归纳法评注7分解之和法解计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方法综合应用.在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法.小结当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则.为了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解.三、克拉默法则解设所求的二次多项式为由题意得由克莱姆法则,得于是,所求的多项式为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。