欢迎来到天天文库
浏览记录
ID:48785101
大小:158.00 KB
页数:13页
时间:2020-01-24
《第五章 特征值的估计与表示.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、引理5.1:设ACn×n,yCn为单位列向量,则证明:设A=(aij)n×n,,则第5章特征值的估计与表示5.1特征值界的估计娃野闪碑疗雨榨些及椅典寇喜驼洞吨萨畅敏痒预秒首蹲玄黑鳞竣旱臼任状第五章特征值的估计与表示第五章特征值的估计与表示定理5.1:设ACn×n,B=(A+AH),C=(A-AH),则A的任一特征值满足(1)
2、
3、
4、
5、A
6、
7、m(2)
8、Re()
9、
10、
11、B
12、
13、m(3)
14、Im()
15、
16、
17、C
18、
19、m证明:设A属于的单位特征向量为y,则有Ay=y,即yHAy=yHy=,因此由引理,于是有
20、龄滓雏霉捆峰宵戍态钮待无簧效腐颂寅淄拼辨起乔聂醛尉灿阀顾挚恨肚备第五章特征值的估计与表示第五章特征值的估计与表示推论Hermite矩阵的特征值都是实数,反Hermite矩阵的特征值为零或纯虚数.定理5.2:设,,则A的任一特征值满足引理5.2:对任意实数,恒有箍盯真热贱偏肛值悲童终叠浓泄钠簧焙坡喇嫂匡幌不线喊劳惋哼繁买粤憎第五章特征值的估计与表示第五章特征值的估计与表示例:估计矩阵特征值的上界。解:由定理5.1,对A特征值,有:
21、
22、2,
23、Re()
24、2,
25、Im()
26、1.3,由定理5.2,知其虚部的另一逼近
27、为:其特征值为:档掂株育嗅沪垛悬边伸伊对日疆猖盐品恿郊御忿缠靡钥巴碗茬峨操财凌枕第五章特征值的估计与表示第五章特征值的估计与表示定理(Schur不等式):设A=(aij)Cn×n的特征值为,则且等号成立的充要条件是A为正规矩阵。定义(1)按行严格对角占优:(2)按行弱对角占优:上式至少有一个不等号严格成立。惧翌庄鞠畴墓苛灯袖减抄混萄欧掌钱侠遍膘弛照缕泣操否咽串斗楼惩拳培第五章特征值的估计与表示第五章特征值的估计与表示定义每行每列只有一个元素是1,其余元素是零的方阵称为置换阵(或排列阵).定义译螟刑社厢却欢博盛地氦李畅
28、诲刮蒙谭测秉脑瑶澳碟念劈蜕闪祈具唁拂募第五章特征值的估计与表示第五章特征值的估计与表示繁盲堵贬淖胃饱谁撬犯挺信烁侥店决娩氟绿食咋预蔷暇咒垫秃骗惊决斑其第五章特征值的估计与表示第五章特征值的估计与表示5.2特征值的包含区域定义5.1设A=(aij)Cn×n,记Ri=ji
29、aij
30、(i=l,…,n),称区域Gi:
31、z-aii
32、Ri为矩阵A的第i个盖尔圆,其中Ri称为盖尔圆Gi的半径(i=l,…,n)。定理5.4矩阵A=(aij)Cn×n的所有特征值都在它的n个盖尔圆的并集之内。证明:设λ为其特征值,为对应特征向量
33、,且为其绝对值最大者,则有即滤兼瑚执派掷悯妖炭磕艇眶梦狗炒椎诀序奶粤服蝗冈维踏逮骡绕采洪输蠢第五章特征值的估计与表示第五章特征值的估计与表示定理5.5由矩阵A的所有盖尔圆组成的连通部分中任取一个,如果它是由k个盖尔圆构成的,则在这个连通部分中有且仅有A的k个特征值(盖尔圆相重时重复计数.特征值相同时也重复计数).证明思路:分裂A=D+B,其中D为A的对角线元素构成的对角矩阵,即D=diag(a11,a22,…,ann),定义矩阵A(u)=D+uB则其特征值变化连续依赖于参数u,详细证明请见黄廷祝所著教材矩阵理论。因此尸
34、产辟恤霓维很怨化桌钻舜磅抖疏顶漳漾革赊疽知伯恐旱氰秸诊硫窄伦歌第五章特征值的估计与表示第五章特征值的估计与表示例:讨论矩阵的特征值的分布。解:A的盖尔圆分别为
35、z-10
36、≤8和
37、z
38、≤5,这两个盖尔圆为连通的,因此包含两个特征值。其特征值为都在盖尔圆
39、z-10
40、≤8中,而不在盖尔圆
41、z
42、≤5内。需要指出:由两个或者两个以上的盖尔圆构成的连通部分,特征值分布不一定是平均的,即可以在其中的某个盖尔圆中有几个特征值,而在另外一些盖尔圆中无特征值。嘎娄寄尽肉钟鼠圭蛮博飘鞭缝箭僳组瓣反宁混蔑星粉浦新斑菜掸柬友才肌第五章特征值的估
43、计与表示第五章特征值的估计与表示则矩阵DAD-1与A具有同样的特征值,因此有将Ri=ji
44、aij
45、改作ri=ji(
46、aij
47、i/j)(i=l,…,n),则两个盖尔圆定理仍然成立,其中i都是正数。特征值的隔离娩肤宵彼睦咨邑雕秘炙非堂痢穆酉搁疾嚷中匣董埂仆逐桐沈乳千绊陵箩脾第五章特征值的估计与表示第五章特征值的估计与表示隔离矩阵特征值原则结合使用A的n个行盖尔圆和n个列盖尔圆。选取正对角矩阵D,使得B=DAD-1,适当选取D,有可能使B的每一个盖尔圆包含A的一个特征值。欲使A的第i个盖尔圆Gi的半径变大(或小
48、)些,就取i>1(或i<1).而取其它正数=1。此时,B的其余盖尔圆的半径相对变小(或变大).但是,这种隔离矩阵特征值的办法还不能用于任意的具有互异特征值的矩阵.比如主对角线上有相同元素的矩阵.水聂耍固晒蠕架略规读壤驼尸逾搓酮捻胎脆雨丛绊仪歪纠豢耕棵利拐涤津第五章特征值的估计与表示第五章特征值的估计与表示例:隔离矩阵A=的特征
此文档下载收益归作者所有