欢迎来到天天文库
浏览记录
ID:48726449
大小:579.00 KB
页数:19页
时间:2020-01-20
《数学北师大版八年级下册等腰三角形的性质(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1等腰三角形第一章三角形的证明情景引入合作探究课堂小结随堂训练第1课时三角形的全等和等腰三角形的性质情景引入下载图片共同特点合作探究全等三角形的判定和性质定理:两角分别相等且其中一组灯脚的对边相等的两个三角形全等全等三角形的对应边相等、对应角相等有两条边相等的三角形叫做等腰三角形。ABC腰腰底边底角顶角相等的两条边AB和AC叫做腰;另一条边BC叫做底边;两腰所夹的角∠BAC叫做顶角;底边与腰的夹角∠ABC和∠ACB叫做底角.如图,△ABC中,AB=AC,那么△ABC就是等腰三角形。只有等腰三角形才有底
2、角和底边.ABCD如图:在三角形ABC中,AB=AC,且AD=BD,请大家数一数,这个图形中一共有多少个等腰三角形?△ABC(AB=AC),△ADB(AD=BD)若将条件改为AB=AC,AD=BD=BC,则有多少个等腰三角形?△ABC(AB=AC)△ADB(AD=BD)△BDC(BD=BC)心灵手巧材料:剪刀、一张矩形纸方法:(1)先将矩形纸按图中虚线对折;(2)剪去阴影部分;(3)将剩余部分展开。大胆猜测请同学们拿出你们刚剪好的等腰三角形纸片,它除了两腰相等以外,你还能发现什么?ABC如果一个图形沿一条
3、直线折叠,直线两旁的部分能够互相重合,我们就说这个图形关于这条直线对称,那么这个图形就叫轴对称图形,这条直线叫对称轴.互相重合的点是对应点,叫做对称点.设问:你发现了什么现象,猜一猜猜想等腰△ABC有哪些性质?角:①∠B=∠C②∠BAD=∠CDA③∠ADC=∠ADB=900边:④BD=CD→两个底角相等→AD为顶角∠BAC的平分线→AD为底边BC上的高→AD为底边BC上的中线结论:等腰三角形是轴对称图形;等腰三角形性质性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形的顶角平分线、底
4、边上的中线、底边上的高互相重合。(可简记为“三线合一”)证明:作顶角的平分线AD.在△BAD和△CAD中,AB=AC(已知),∠1=∠2(辅助线作法),AD=AD(公共边),∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).已知:△ABC中,AB=AC.求证:∠B=∠C.ABC12证明:等腰三角形的两个底角相等作顶角的平分线D证明:作底边中线AD.在△BAD和△CAD中,AB=AC(已知),BD=CD(辅助线作法),AD=AD(公共边),∴△BAD≌△CAD(SSS).∴∠B=∠C(
5、全等三角形的对应角相等).已知:△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:等腰三角形的两个底角相等作底边中线证明:作底边高线AD.AB=AC(已知),AD=AD(公共边),∴Rt△BAD≌Rt△CAD(HL).∴∠B=∠C(全等三角形的对应角相等).已知:△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:等腰三角形的两个底角相等作底边的高线在Rt△BAD和△RtCAD中,等腰三角形的性质1等腰三角形的两个底角相等(等边对等角)2等腰三角形顶角的平分线,底边上的中线和底边上的高互相重合(
6、等腰三角形三线合一)例1在三角形ABC中,已知AB=AC,且∠B=80°,则∠C=___度,∠A=____度?∵AB=AC(已知)∴∠B=∠C(等边对等角)∵∠B=80°(已知)∴∠C=80°又∵∠A+∠B+∠C=180°(三角形内角和为180°)∴∠A=180°-∠B-∠C∠A=20°BCA等腰三角形的性质1等腰三角形的两个底角相等(等边对等角)2等腰三角形顶角的平分线,底边上的中线和底边上的高互相重合(等腰三角形三线合一)操练1在三角形ABC中,已知AB=AC,且∠A=50°,则∠B=——度,∠C=—
7、—度?CBA∵AB=AC(已知)∴∠B=∠C(等边对等角)又∵∠A+∠B+∠C=180°(三角形内角和为180°)∠A=50°(已知)∴∠B=65°∠C=65°等腰三角形的性质定理等腰三角形的两个底角相等(简写成“等边对等角”)等腰三角形顶角的平分线平分底边并且垂直于底边.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.“三线合一”课堂小结通过本节课的学习,你有哪些收获?性质1:等边对等角性质2:“三线合一”常用来证明两角相等,求等腰三角形各角的度数.研究等腰三角形的有关问题时“三线”是常用的辅
8、助线.等腰三角形1.判断下列语句是否正确。(1)等腰三角形的角平分线、中线和高互相重合。()(2)有一个角是60°的等腰三角形,其它两个内角也为60°.()(3)等腰三角形的底角都是锐角.()(4)钝角三角形不可能是等腰三角形.()××随堂训练
此文档下载收益归作者所有