欢迎来到天天文库
浏览记录
ID:48725092
大小:251.00 KB
页数:25页
时间:2020-01-20
《数学北师大版八年级下册公式法分解因式 .ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、因式分解课前小测:1.选择题:1)下列各式能用平方差公式分解因式的是()4X²+y²B.4x-(-y)²C.-4X²-y³D.-X²+y²-4a²+1分解因式的结果应是()-(4a+1)(4a-1)B.-(2a–1)(2a–1)-(2a+1)(2a+1)D.-(2a+1)(2a-1)2.把下列各式分解因式:1)18-2b²2)x4–1DD1)原式=2(3+b)(3-b)2)原式=(x²+1)(x+1)(x-1)因式分解的基本方法2运用公式法把乘法公式反过来用,可以把符合公式特点的多项式因式分解,这种方法叫公式法.(1)平方差
2、公式:a2-b2=(a+b)(a-b)(2)完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2平方差公式反过来就是说:两个数的平方差,等于这两个数的和与这两个数的差的积a²-b²=(a+b)(a-b)因式分解平方差公式:(a+b)(a-b)=a²-b²整式乘法将下面的多项式分解因式1)m²-162)4x²-9y²m²-16=m²-4²=(m+4)(m-4)a²-b²=(a+b)(a-b)4x²-9y²=(2x)²-(3y)²=(2x+3y)(2x-3y)例1.把下列各式分解因式(1)16a²-1(
3、2)4x²-m²n²(3)—x²-—y²925116(4)–9x²+4解:1)16a²-1=(4a)²-1=(4a+1)(4a-1)解:2)4x²-m²n²=(2x)²-(mn)²=(2x+mn)(2x-mn)例2.把下列各式因式分解(x+z)²-(y+z)²4(a+b)²-25(a-c)²4a³-4a(x+y+z)²-(x–y–z)²5)—a²-212解:1.原式=[(x+z)+(y+z)][(x+z)-(y+z)]=(x+y+2z)(x-y)解:2.原式=[2(a+b)]²-[5(a-c)]²=[2(a+b)+5(a-c
4、)][2(a+b)-5(a-c)]=(7a+2b-5c)(-3a+2b+5c)解:3.原式=4a(a²-1)=4a(a+1)(a-1)解:4.原式=[(x+y+z)+(x-y-z)]×[(x+y+z)-(x-y-z)]=2x(2y+2z)=4x(y+z)巩固练习:1.选择题:1)下列各式能用平方差公式分解因式的是()4X²+y²B.4x-(-y)²C.-4X²-y³D.-X²+y²-4a²+1分解因式的结果应是()-(4a+1)(4a-1)B.-(2a–1)(2a–1)-(2a+1)(2a+1)D.-(2a+1)(2a-1)
5、2.把下列各式分解因式:1)18-2b²2)x4–1DD1)原式=2(3+b)(3-b)2)原式=(x²+1)(x+1)(x-1)完全平方公式现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方公式”我们把以上两个式子叫做完全平方式“头”平方,“尾”平方,“头”“尾”两倍中间放.判别下列各式是不是完全平方式是是是是完全平方式的特点:1、必须是三项式2、有两个平方的“项”3、有这两平方“项”底数的2倍或-2倍下列各式是不是完全平方式是是是否是否请补上一项,使下列多项式成为完全平方式我们可
6、以通过以上公式把“完全平方式”分解因式我们称之为:运用完全平方公式分解因式例题:把下列式子分解因式4x2+12xy+9y2=(首±尾)2请运用完全平方公式把下列各式分解因式:练习题:1、下列各式中,能用完全平方公式分解的是()A、a2+b2+abB、a2+2ab-b2C、a2-ab+2b2D、-2ab+a2+b22、下列各式中,不能用完全平方公式分解的是()A、x2+y2-2xyB、x2+4xy+4y2C、a2-ab+b2D、-2ab+a2+b2DC3、下列各式中,能用完全平方公式分解的是()A、x2+2xy-y2B、x2-
7、xy+y2C、D、4、下列各式中,不能用完全平方公式分解的是()A、x4+6x2y2+9y4B、x2n-2xnyn+y2nC、x6-4x3y3+4y6D、x4+x2y2+y4DD5、把分解因式得()A、B、6、把分解因式得()A、B、BA7、如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是()A、20B、-20C、10D、-108、如果x2+mxy+9y2是一个完全平方式,那么m的值为()A、6B、±6C、3D、±3BB9、把分解因式得()A、B、C、D、10、计算的结果是()A、1B、-1C、2D、-2
8、CA思考题:1、多项式:(x+y)2-2(x2-y2)+(x-y)2能用完全平方公式分解吗?2、在括号内补上一项,使多项式成为完全平方式:X4+4x2+()小结:1、是一个二次三项式2、有两个“项”平方,而且有这两“项”的积的两倍或负两倍3、我们可以利用完全平方公式来进行因式分解完全平方式
此文档下载收益归作者所有