资源描述:
《数学北师大版九年级上册一元二次方程(1).1一元二次方程(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十一章一元二次方程21.1一元二次方程(1)?问题情景(1)问题1有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?100㎝50㎝x3600分析:设切去的正方形的边长为xcm,则盒底的长为,宽为.(100-2x)cm(50-2x)cm根据方盒的底面积为3600cm2,得即?问题2要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?问题情景(2)分
2、析:全部比赛共4×7=28场设应邀请x个队参赛,每个队要与其他个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场.即(x-1)这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.探究新知:一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程(quadraticequationinoneunknown)?尝试练习1判断下列方程是否为一元二次方程?(1)(2)(3)(4)3523-
3、=+yx一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。为什么要限制a≠0,b,c可以为零吗?想一想ax2+bx+c=0(a≠0)二次项系数一次项系数常数项?例题讲解2将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的尝试练习《龙门活页》第1、2题练习课本第4页,练习的第1题精讲点拨1.判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。2.一元
4、二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。例题讲解当堂训练方程(2a-4)x2-2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?解:当a≠2时是一元二次方程;当a=2,b≠0时是一元一次方程;1.下列方程中,无论a为何值,总是关于x的一元二次方程的是()A.(2x-1)(x2+3)=2x2-aB.ax2+2x+4=0C.ax2+x=x2-1D.(a2+1)x2=02.当m为何值时,方程是关于x的一元二次方程.D当堂训练1.一元二
5、次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。判一判下列方程哪些是一元二次方程?(1)7x2-6x=0(2)2x2-5xy+6y=0(3)2x2--1=0(4)=0(5)x2+2x-3=1+x2-13x-y22解:(1)、(4)1.关于x的方程(k-3)x2+2x-1=0,当k时,是一元二次方程.≠32.关于x的方程(k2-1)x2+2(k-1)x+2k+2=0,当k时,是一元二次方程.,当k时,是一
6、元一次方程.≠±1=-1想一想:把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:方 程一般形式二次项系 数一次项系 数常数项3x2=5x-1(x+2)(x-1)=64-7x2=03x2-5x+1=0x2+x-8=0-7x2+0x+4=031-7-5101-84练一练-7x2+4=07x2-4=070-4从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.解:设竹竿的长为x尺,则门的宽度 为(x-
7、4)尺,长为(x-2)尺依题意得方程:(x-4)2+(x-2)2=x2即x2-12x+20=04尺2尺XX-4X-2