数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt

数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt

ID:48718905

大小:1.06 MB

页数:26页

时间:2020-01-20

数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt_第1页
数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt_第2页
数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt_第3页
数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt_第4页
数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt_第5页
资源描述:

《数学人教版八年级上册全等三角形的判定SSS.1全等三角形的判定(SSS).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、知识回顾ABC1.什么叫全等三角形?能够重合的两个三角形叫全等三角形。2.全等三角形有什么性质?全等三角形的对应边相等,对应角相等3.已知,试找出其中相等的边与角≌≌ABC知识回顾即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?≌与满足上述六个条件中的一部分是否能保证与全等呢?问题ABC一个条件可以吗?两个条件可以吗?一个条件可以吗?有一条边相等的两个三角形不一定全等探究活动2.有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等有两个角对应相等的两个

2、三角形两个条件可以吗?3.有一个角和一条边对应相等的两个三角形2.有两条边对应相等的两个三角形4cm6cm不一定全等30060o4cm6cm不一定全等30o6cm结论:探究活动三个条件呢?探究活动三条边;2.三个角;3.两边一角;4.两角一边。如果给出三个条件画三角形,你能说出有哪几种可能的情况?三边相等的两个三角形会全等吗?画法:动手试一试探究活动你能得出什么结论?结论三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。用上面的结论可以判定两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.ABCABC三边对应相等的两个三角形全等.(简写成“边边边”或“

3、SSS”)如何用符号语言来表达呢?≌结论课本P7∴∠A=∠___∠B=∠___∠C=∠___B∴△ABC△ADC(SSS)例1已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADCABCDACAC()≌AB=AD()BC=CD()证明:在△ABC和△ADC中=已知已知公共边分析:要证明△ABC≌△ADC,首先看这两个三角形的三条边是否对应相等。如图:已知AB=AD,BC=CD求证:△ABC≌△ADC例2如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.ABCD应用迁移,巩固提高ABCD.CDBDBCD=的中点,是证明:QA

4、CDABD中,和在DDADADCDBDACAB,=,=,=≌.SSSACDABD)(DD归纳:①准备条件:证全等时要用的间接条件要先证好;②三角形全等书写三步骤:写出在哪两个三角形中摆出三个条件用大括号括起来写出全等结论证明的书写步骤:如图,AB=AC,AE=AD,BD=CE,求证:△AEB≌△ADC。证明:∵BD=CE∴BD-ED=CE-ED,即BE=CD。CABDE练一练在AEB和ADC中,AB=ACAE=ADBE=CD∴△AEB≌△ADC(sss)工人师傅常用角尺平分一个任意角.做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相

5、同的刻度分别与M,N重合.过角尺顶点C的射线OC便是AOB的平分线.为什么?练习OMABNC≌例3、已知∠BAC(如图),用直尺和圆规作∠BAC的平分线AD,并说出该作法正确的理由。ACB图1已知:如图1,AC=FE,AD=FB,BC=DE求证:△ABC≌△FDE证明:∵AD=FB∴AB=FD(等式性质)在△ABC和△FDE中AC=FE(已知)BC=DE(已知)AB=FD(已证)∴△ABC≌△FDE(SSS)求证:∠C=∠E,AcEDBF==??。。(2)∵△ABC≌△FDE(已证)∴∠C=∠E(全等三角形的对应角相等)求证:AB∥EF;DE∥BC已知:如图,四边形ABCD中,

6、AD=CB,AB=CD求证:∠A=∠C。ACDB分析:要证两角或两线段相等,常先证这两角或两线段所在的两三角形全等,从而需构造全等三角形。构造公共边是常添的辅助线1234已知:如图,AB=AC,DB=DC,请说明∠B=∠C成立的理由ABCD在△ABD和△ACD中,AB=AC(已知)DB=DC(已知)AD=AD(公共边)∴△ABD≌△ACD(SSS)解:连接AD∴∠B=∠C(全等三角形的对应角相等)请同学们谈谈本节课的收获与体会本节课你学到了什么?还存在什么没有解决的问题?小结2.三边对应相等的两个三角形全等(简写为“边边边”或“SSS”);1.知道三角形三条边的长度怎样画三角形

7、;3.初步学会理解证明的思路,应用“边边边”证明两个三角形全等.课堂小结1.边边边公理:有三边对应相等的两个三角形全等简写成“边边边”(SSS)2.边边边公理的发现过程所用到的数学方法(包括画图、猜想、分析、归纳等.)3.边边边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角)所在的两个三角形全等.转化1.说明两个三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中.用结论说明两个三角形全等需注意已知∠AOB(如图),用直尺和圆规作∠A’O

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。