欢迎来到天天文库
浏览记录
ID:48716930
大小:144.00 KB
页数:15页
时间:2020-01-20
《数学人教版八年级上册12.2.2三角形全等的判定:SAS.2.2三角形全等的判定:SAS课件ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、全等三角形的判定(SAS)1、边边边公理2、转化思想证线段位置关系(垂直、平行)角平分线求角度数、数量关系角相等证三角形全等找三条对应相等的边找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)复习①三角;②三边;③两边一角;④两角一边。3.如果满足三个条件,你能说出有哪几种可能的情况?探索三角形全等的条件画△ABC,使AB=3cm,AC=4cm。画法:2.在射线AM上截取AB=3cm3.在射线AN上截取AC=4cm若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN=45°4.连接BC则△ABC就是所求的三角形把你们所画的三角
2、形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?探究新知1⑵边-角-边由前边的作图比较过程,我们可以得出什么结论?用符号语言表达为:在△ABC与△DEF中AB=DE∠A=∠DAC=DF∴△ABC≌△DEF(SAS)ABCDEF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”画△ABC,使AB=4cm,BC=3cm。画法:2.在射线AM上截取AB=4cm3.以点B为圆心,3cm为半径,交AN于点C。若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN=45°4.连接BC则△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角
3、形进行比较,它们能互相重合吗?探究新知2⑵边-边-角把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?探究新知⑵ABMCD结论:两边及其一边所对的角相等,两个三角形不一定全等.ABCABD思考:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离.为什么?分析:如果能证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE.∠ACB=∠DCE(对顶角)满足以上两个条件能否使
4、两个三角形全等呢?练一练1、如图,B点在A点的正北方向。两车从路段AB的一端A出发,分别向东、向西进行相同的距离,到达C、D两地。此时C,D到B的距离相等吗?为什么?BDAC【证明】∵在△BAD和△BAC中,BA=BA∠BAD=∠BACAD=AC则△BAD≌△BAC(SAS).即BD=BC寻找对应相等的边角边公共边-对应边垂直-对应角(90°)中点-对应边2、如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠DADBEFC【证明】∵BF=BE+EFCE=CF+FE而BE=CF∴BF=CE在△ABF和△DCE中,BF=CE∠B=∠CAB=DC∴
5、△BAD≌△BAC(SAS)即∠A=∠D寻找对应相等的边角边相等线段同加同减-对应边3、如图,已知AB=AE,AC=AD,∠BAD=∠EAC,证明:∠B=∠EABCDE证明:∵∠BAD=∠EAC∴∠BAD+∠DAC=∠EAC+∠DAC即∠BAC=∠DAE在△ABC与△ADE中,AB=AE∠BAC=∠DAEAD=AC∴△ABC≌△AED∴∠B=∠E寻找相等的角相等的两个角同加或同减,得到相等的对应角4、如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ADB,还需要有什么条件?ABCDAC=AD寻找相等的对应角角平分线寻找相等的对应边公共边1、边边边公理、边角边公
6、理—夹角2、转化思想证线段位置关系(垂直、平行)角平分线求角度数、数量关系角相等证三角形全等SSSSAS小结线段相等寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)寻找对应相等的角:公共角、角平分线平分角、直角或垂直(90°)、平行线性质、通过计算(同加或同减)小结探究新知2⑵边-边-角(角不夹在两边的中间,形成两边一对角)做一做已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边,画一个三角形.3cm4cm45°步骤:1、画一线段AB,使它等于4cm;2、画∠BAM=45°;3、以B为圆心,3cm长为半径画弧
7、,交AM于点C;4、连结CB.△ABC即为所求.
此文档下载收益归作者所有