函数定义域的类型和求法.ppt

函数定义域的类型和求法.ppt

ID:48696737

大小:214.01 KB

页数:14页

时间:2020-01-19

函数定义域的类型和求法.ppt_第1页
函数定义域的类型和求法.ppt_第2页
函数定义域的类型和求法.ppt_第3页
函数定义域的类型和求法.ppt_第4页
函数定义域的类型和求法.ppt_第5页
资源描述:

《函数定义域的类型和求法.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数定义域的类型和求法1.当函数是整式时例如那么函数的定义域是实数集R。2.如果函数中含有分式,那么函数的分母必须不为零。3.如果函数中含有偶次根式,那么根号内的式子必须不小于零。4.零的零次幂没有意义,即f(x)=x0,x≠0。5.对数的真数必须大于零。6.对数的底数满足大于零且不等于1。求函数定义域注意以下几点:一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。例1求函数的定义域。解:要使函数有意义,则必须满足由①解得x≤-3或x≥5③由②解得x≠5或x≠-11④由③和④求交集得x≤-

2、3且x≠-11或x>5故所求函数的定义域为{x

3、x≤-3且x≠-11}∪{x

4、x>5}。例2求函数的定义域。解:要使函数有意义,则必须满足由①解得2kπ≤x≤π+2kπ,k∈Z③由②解得-4

5、g(x)]的定义域。其解法是:已知f(x)的定义域是[a,b]求f[g(x)]的定义域是解a≤g(x)≤b,即为所求的定义域。例1已知f(x)的定义域为[-2,2],求f(x2-1)的定义域。解:令-2≤x2-1≤2,得-1≤x2≤3,即0≤x2≤3,因此,从而故函数的定义域是(2)已知f[g(x)]的定义域,求f(x)的定义域。其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。例2已知f(2x+1)的定义域为[1,2],求f(x)的定义域。解:因为1≤x≤2,2≤2x≤4,3≤2x+1≤5.

6、即函数f(x)的定义域是{x

7、3≤x≤5}。(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.所以函数f(3x)的定义域是-1≤3x≤1即{x

8、-1/3≤x≤1/3}。例4若f(x)的定义域为[-3,5],求g(x)=f(-x)+f(x2)的定义域.解:由f(x)的定义域为[-3,5],则g(x)必有,即解得-≤x≤所以函数g(x)的定义域为[-,]例5已知函数的定义域为R求实数m的取值范围。分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R都成立,由x2项的系数是m,所以应分m=0或

9、m≠0进行讨论。解:当m=0时,函数的定义域为R;当m≠0时,mx2-6mx+8+m≥0是二次不等式,其对一切实数x都成立的充要条件是综上可知0≤m≤1。注:不少同学容易忽略m=0的情况,希望通过此例解决问题。例6已知函数的定义域是R,求实数k的取值范围。解:要使函数有意义,则必须kx2+4kx+3≠0恒成立,因为f(x)的定义域为R,即kx2+4kx+3=0无实数根①当k≠0时,△=16k2-4×3k<0恒成立,解得②当k=0时,方程左边=3≠0恒成立。综上k的取值范围是四.实际问题型:函数的定义域除满足解析式外,要注意问题的实际意义对自变量的限制,须要加倍注意,并形成意

10、识。例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函数的定义域。解:设矩形一边为x,则另一边长为于是可得矩形面积由问题的实际意义,知函数的定义域应满足故所求函数的解析式为,定义域为(0,)五、参数型对于含参数的函数,求定义域时,必须对字母分类讨论。例9已知f(x)的定义域为[0,1],求函数F(x)=f(x+a)+f(x-a)的定义域。解:因为f(x)的定义域为[0,1],即0≤x≤1。故函数F(x)的定义域为下列不等式组的解集:,即即两个区间[-a,1-a]与[a,1+a]的交集,比较两个区间左、右端点,知(1)当时,F(x)的定义域为{x

11、-a

12、≤x≤1+a};(2)当时,F(x)的定义域为{x

13、a≤x≤1-a};(3)当或时,上述两区间的交集为空集,此时F(x)不能构成函数。在区间(-1,1]上是增函数,在区间[1,3)上是减函数。对称轴x=1,由二次函数的单调性,可知t在区间(-∞,1]上是增函数;在区间[1,+∞)上是减函数,而六、隐含型有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解,事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集。因此,求函数的单调区间,必须先求定义域。例10求函数的单调区间。解:由-x2+2x+3>0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。