专题3有关圆锥曲线轨迹方程的求法.ppt

专题3有关圆锥曲线轨迹方程的求法.ppt

ID:48669972

大小:722.00 KB

页数:24页

时间:2020-01-19

专题3有关圆锥曲线轨迹方程的求法.ppt_第1页
专题3有关圆锥曲线轨迹方程的求法.ppt_第2页
专题3有关圆锥曲线轨迹方程的求法.ppt_第3页
专题3有关圆锥曲线轨迹方程的求法.ppt_第4页
专题3有关圆锥曲线轨迹方程的求法.ppt_第5页
资源描述:

《专题3有关圆锥曲线轨迹方程的求法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、曲线与方程学习如几何曲线幸福似小数循环.教学目标:1、知识与能力:会求各种曲线的方程2、过程与方法:会用直接法、相关点法、定义法求曲线的方程3、情感态度与价值观:培养合作探讨、勇于创新的精神,渗透事物之间等价转化的辩证唯物主义观点重点:会用相关点法求曲线的轨迹方程难点:灵活运用各种方法求轨迹方程典例分析题型一直接法求曲线方程【例1】已知点F(1,0),直线l:x=-1,P为坐标平面上的动点,过P作直线l的垂线,垂足为点Q,且求动点P的轨迹方程C.学后反思当动点所满足的条件本身就是一些几何量的等量关系或这些几何条件

2、简单明了易于表达时,只要将这种关系“翻译”成含x、y的等式就能得到曲线的轨迹方程,这种求轨迹方程的方法称之为直接法.分析设P点坐标为(x,y),再表示出Q点,,,,的坐标,直接代入满足的条件求P点轨迹方程.解:设动点P(x,y),则Q(-1,y).由,得(x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得C:举一反三1.已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程.解析:设P(x,y),则(1)当x≤3时,方程变为,即.化简,得(2)当x>3时,方程变为,即化简,得故所

3、求的点P的轨迹方程是,0≤x≤3,,3<x≤4.题型二利用定义或待定系数法求曲线方程【例2】已知圆:和圆:动圆M同时与圆及圆相外切.求动圆圆心M的轨迹方程.分析设圆半径,圆半径,动圆M半径R,则由两圆外切性得,∴(定值)>0,故可考虑用双曲线定义求轨迹.解设动圆M与圆及圆分别外切于点A和点B,根据两圆外切的充要条件,得,∵MA=MB,∴即这表明动点M到两定点、的距离的差是常数2.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到的距离大,到的距离小),其中a=1,c=3,则.设点M的坐标为(x,y),则其轨迹方

4、程为(x≤1).学后反思解决本题的关键是找到动点M满足的条件,对于两圆相切问题,自然考虑圆心距与半径的关系.当判断出动点的轨迹是双曲线的一支,且可求出a,b时,则直接写出其标准方程,这种求曲线方程的方法称为定义法.举一反三2.如图,已知线段AB=4,动圆O′与线段AB切于点C,且AC-BC=.过点A、B分别作圆O′的切线,两切线相交于P,且P、O′均在AB同侧.建立适当坐标系,当O′位置变化时,求动点P的轨迹E的方程.解析:以线段AB的中点为原点,AB所在直线为x轴,建立平面直角坐标系,则A(-2,0),B(2,

5、0).设P(x,y),由已知,得PA-PB=AC-BC=<4.根据双曲线的定义,动点P的轨迹为双曲线的右支且a=2,c=2,则所以轨迹E的方程为(x>2).题型三用相关点法求轨迹方程【例3】已知长为的线段AB的两个端点A、B分别在x轴、y轴上滑动,P是AB上一点,且求点P的轨迹方程.分析由A、B两点分别在x轴、y轴上,且,得P点的坐标可以用A、B两点的坐标表示出来,而

6、AB

7、=,故可求得A、B坐标满足的关系式,再把P点的坐标代入所求的关系式即可得到P点的轨迹方程.解设A(x0,0),B(0,y0),P(x,y),

8、因为又,所以,即,因为AB=,即所以化简得,故点P的轨迹方程为…..学后反思对涉及较多点之间的关系问题,可先设出它们各自的坐标,并充分利用题设建立它们之间的相关关系;再对它们进行转化和化简,最后求出所求动点坐标所满足的方程.这种根据已知动点的轨迹方程,求另外一点的轨迹方程的方法称为代入法或相关点法.举一反三3.点P是圆上的动点,O是坐标原点,求线段OP的中点Q的轨迹.解析:设,Q(x,y),则,∴,∵是圆上的动点,∴∴即题型四用参数法求轨迹方程【例4】(14分)设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、

9、B,O是坐标原点,l上的动点P满足当l绕点M旋转时,求动点P的轨迹方程.分析设出直线l的方程,和A、B两点的坐标,并将直线l方程与椭圆方程联立,求出,,由可表示出点P坐标,再用消参法求轨迹方程.解直线l过点M(0,1),当l的斜率存在时,设其斜率为k,则l的方程为y=kx+1……………………………………….1′设、,由题设可得点A、B的坐标、是方程组,①的解.②将①代入②并化简,得,……………4′则…………………………………8′于是………10′设点P的坐标为(x,y),则消去参数k,得(y≠0)③……………….1

10、2′当直线l的斜率不存在时,可得A、B的中点坐标为原点(0,0),也满足方程③,所以点P的轨迹方程为…………………………………..14’学后反思本题运用了参数法求轨迹.当动点P的坐标x、y之间的直接关系不易建立时,可适当地选取中间变量t,并用t表示动点的坐标x、y,从而得到动点轨迹的参数方程消去参数t,便可得到动点P的轨迹方程.其中应注意方程的等价性和参数t与动点P(x,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。