欢迎来到天天文库
浏览记录
ID:48649996
大小:1.89 MB
页数:56页
时间:2020-01-24
《《二次函数的图象与性质》课件1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数的图象与性质本节内容1.2我们已经学习过用描点法画一次函数、反比例函数的图象,如何画一个二次函数的图象呢?探究画二次函数的图象列表:由于自变量x可以取任意实数,因此让x取0和一些互为相反数的数,并且算出相应的函数值,列成下表:x…-3-2-10123……9410149…描点:在平面直角坐标系内,以x取的值为横坐标,相应的函数值为纵坐标,描出相应的点.如下图所示.AA′B′BAA′B′B观察左图,点A和点A′,点B和点B′,…,它们有什么关系?取更多的点试试,你能得出函数y=x2的图象关于y轴对称吗?观察左图,y轴右边描出的各点,当横坐标
2、增大时,纵坐标有什么变化?y轴右边的所有点都具有纵坐标随着横坐标的增大而增大的特点吗?可以证明y=x2的图象关于y轴对称;图象在y轴右边的部分,函数值随自变量取值的增大而增大,简称为“右升”.AA′B′B连线:根据上述分析,我们可以用一条光滑曲线把原点和y轴右边各点顺次连接起来;然后利用对称性,画出图象在y轴左边的部分(把y轴左边的点和原点用一条光滑曲线顺次连接起来),这样就得到了的图象.如上图所示.观察下图,函数的图象除了上面已经知道的关于y轴对称和“右升”外,还有哪些性质?观察图象在对称轴左边的部分,函数值随自变量取值的增大而减小,简称为“
3、左降”;当x=0时,函数值最小,最小值为0.从下图中可以看出,二次函数的图象是一条曲线,它的开口向上,对称轴与图象的交点是原点(0,0);一般地,当a>0时,y=ax2的图象都具有上述性质.于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴右边的部分,然后利用对称性,画出图象在y轴左边的部分.在画右边部分时,只需“列表、描点、连线”三个步骤.x0123…00.524.5…举例例1画二次函数的图象.因为二次函数的图象关于y轴对称,因此列表时,自变量x可以从原点的横坐标0开始取值.解列表:描点和连线:画出图象在y轴右边的部分.如下图所示
4、:●●●●利用对称性,画出图象在y轴左边的对称点,并用一条光滑曲线把y轴左边的点和原点顺次连接起来,这样就得到了的图象.如下图所示:●●●●●●●探究我们已经画出了的图象,能不能从它得出二次函数的图象呢?在的图象上任取一点,它关于x轴的对称点Q的坐标是,如下图所示:从点Q的坐标看出,点Q在的图象上.Q由此可知,的图象与的图象关于x轴对称,因此只要把的图象沿着x轴翻折并将图象“复印”下来,就得到的图象.如下图中的绿色曲线:Q对称轴是,对称轴与图象的交点是;图象的开口向,y轴O(0,0)下观察下图,函数的图像具有哪些性质?从图中可以看出,二次函数的
5、图象是一条曲线,观察图象在对称轴右边的部分,函数值随自变量取值的增大而,简称为;图象在对称轴左边的部分,函数值随自变量取值的增大而,简称为;当x=时,函数值最,减小右降增大左升0大0最值为.大当a<0时,y=ax2的图象都具有上述性质.于是今后画y=ax2(a<0)的图象时,可以直接先画出图象在y轴右边的部分,然后利用对称性,画出图象在y轴左边的部分.在画右边部分时,只要“列表、描点、连线”三个步骤就可以了.举例解列表:例2画二次函数的图象.x012340-1-4描点和连线:画出图象在y轴右边的部分.利用对称性画出y轴左边的部分.这样我们得到了
6、的图象.说一说如下图所示,在棒球赛场上,棒球在空中沿着一条曲线运动,它与二次函数y=ax2(a<0)的图象相像吗?以棒球在空中经过的路线的最高点为原点建立直角坐标系,x轴的正方向水平向右,y轴的正方向竖直向上,则可以看出棒球在空中经过的路线是形如y=ax2(a<0)的图象的一段.由此受到启发,我们把二次函数y=ax2的图象这样的曲线叫作抛物线,简称为抛物线y=ax2.一般地,二次函数y=ax2的图象关于y轴对称.抛物线与它的对称轴的交点(0,0)叫做抛物线的顶点.探究把二次函数的图象E向右平移1个单位,得到图形F,如下图所示:由于平移不改变图形
7、的形状和大小,因此图象E在向右平移1个单位后:原像像抛物线E:图象F也是抛物线E的顶点O(0,0)点O′(1,0)是F的顶点E有对称轴l(与y轴重合)直线l′(过点O′与y轴平行)是F的对称轴E开口向上F也开口向上抛物线F是哪个函数的图象呢?在抛物线上任取一点,它在向右平移1个单位后,点P的像点Q的坐标是什么?把点P的横坐标a加上1,纵坐标不变,就得到像点Q的坐标为记b=a+1,则a=b-1.从而点Q的坐标为,这表明:点Q在函数的图象上.由此得出,抛物线F是函数的图象.从上面的过程可以说明:函数的图象是抛物线F,它的开口向上,它的顶点是,它的对
8、称轴是过点且平行于y轴的直线l′.直线l′是由横坐标为1的所有点组成的,我们把直线l′记做直线x=1.结论二次函数y=a(x-h)2的图象是抛物线,它
此文档下载收益归作者所有