欢迎来到天天文库
浏览记录
ID:48639390
大小:161.10 KB
页数:11页
时间:2020-02-27
《用公式法解一元二次方程——初中数学第五册教案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、用公式法解一元二次方程——初中数学第五册教案 第1教时 教学内容:12.1用公式解一元二次方程(一) 教学目标: 知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项. 过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性. 情感与态度目标:由知识实际,树立转化的思想,由设数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。 教学重、难点
2、与关键: 重点:一元二次方程的意义及一般形式. 难点:正确识别一般式中的“项”及“系数”。 教辅工具: 教学程序设计: 程序 教师活动 学生活动 备注 创设 问题 情景 1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力. 2.现有一块长80cm,宽60cm的薄钢片,在每
3、个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长? 教师启发学生设数、列方程,经得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题. 板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣. 学生看投影并思考问题 通过章前引例和节前引例,使学生真正认识到知识实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义
4、;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位. 探 究 新 知 1 1.复习提问 (1)什么叫做方程?曾学过哪些方程? (2)什么叫做一元一次方程?“元”和“次”的含义? (3)什么叫做分式方程? 2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪? 引导,启发学生设数列方程,并得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
5、 整式方程:方程的两边都是关于数的整式,这样的方程称为整式方程. 一元二次方程:只含有一个数,且数的最高次数是2,这样的整式方程叫做一元二次方程. 3.练习:指出下列方程,哪些是一元二次方程? (1)x(5x-2)=x(x+1)+4x2; (2)7x2+6=2x(3x+1); (3) (4)6x2=x; (5)2x2=5y; (6)-x2=0 4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式. 一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称
6、一次项,c称常数项,a称二次项系数,b称一次项系数. 一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解. 5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项? 教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式. 讨论后回答 学生设数列方程,并得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较, 独立完成 加深理解 学生试解
7、问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫 反馈 训练 应用 提高 练习1:教材P.5中1,2. 练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:. (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx. 要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数. 小结 提高 (四)总结、扩展 引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?
8、分清楚概念的区别和联系? 1.将实际问题用设数列方程转化为数学问题,体会知识实际以及转化为方程的思想方法. 2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程. 3.一元二次方程的意义与一般形式ax2
此文档下载收益归作者所有