平行线的性质.doc

平行线的性质.doc

ID:48625037

大小:60.00 KB

页数:10页

时间:2020-01-30

平行线的性质.doc_第1页
平行线的性质.doc_第2页
平行线的性质.doc_第3页
平行线的性质.doc_第4页
平行线的性质.doc_第5页
资源描述:

《平行线的性质.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.平行线的性质  §5.3.1平行线的性质本节课的主要内容是平行线的三个性质和命题等内容,首先在研究了平行线的判定的基础上了研究平行线的性质,因为学生在研究判定是已经了解到研究平行线就是研究两条直线被第三条直线所截形成的角之间的关系,所以学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系;因此,从平行线的判定与性质的关系入手引入了对平行线性质的探究,对于命题的相关知识是在学生已经解触了一些命题,如:“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”,“等式两边加同一个数,结果仍是等式“,“对顶角相等”等命题的基础上,初步了解了命题、命题的构成

2、、真假命题、定理等内容,使学生初步接触有关形式逻辑概念和术语。平行线的性质是本节课的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是本节课的一个难点,教学过程中可告诉学生,从角的关系得到两直线平行时判定,由已知直线平行得出角的相等或互补关系,是平行线的性质。本节课在利用两直线平行,同位角相等,来推理证明其他两条性质的过程中又一次让学生感受到转化思想在解决数学问题中的应用,在教学过程中,应注意这种思想方法的渗透,有意识的让学生认识整理,使学生在今后的不断训练中掌握这种方法。【教学重点与难点】教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的

3、推理和计算.教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用【教学目标】1.使学生理解平行线的性质和判定的区别.2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算...3.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。毛【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。【教学过程】一、复习回顾(设计说明:平行线的判定定理与性质定

4、理是互逆的,对初学者来说易将他们混淆,因此,复习平行线的判定为后面性质与判定的比较做好准备,同时利用性质定利用判定定理的互逆关系自然引入新课。)问题:如何用同位角、内错角、同旁内角来判定两条直线是否平行?反过来:,如果两条直线平行,那么同位角、内错角、同旁内角由各有什么样的关系呢?这是我们这节课讲要探究的问题。(教学说明:在学生回答平行线的判定定理时,可将其合理板书,以便直观地进行平行线的判定与性质的对比分析,加深学生的印象。)二、动手实践,探究新知(设计说明:通过动手实验,让学生首先在动手探索的过程中感知平行线的性质,后再在性质1的基础上推理论证行至2、3的正确性,从而

5、使学生对知识的认识从感性上升到理性。)..1.生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角。2.学生测量这些角的度数,把结果填入表内.角∠1∠2∠3∠4∠5∠6∠7∠8度数3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,检验你的猜想是否还成立?如果直线a与b不平行,你的猜想还成立吗?5.师生归纳平

6、行线的性质平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等...性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.可让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定①因为a∥b,①因为∠1=∠2,所以∠1=∠2所以a∥b.②因为a∥b,②因为∠2=∠3,所以∠2=∠3,所以a∥b.③因为a∥b,③因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b.

7、6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质问题:在上节课中,我们利用平行线的判定方法1,推出了平行线的判定方法2,类似地,大家能根据平行线的性质1,推出性质2吗?可以先放手让

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。