欢迎来到天天文库
浏览记录
ID:48595243
大小:77.00 KB
页数:8页
时间:2020-02-26
《列举法求概率MicrosoftWord文档(3).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:25.2列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。过程与方法目标经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。情感与态度目标通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。教学重点:习运用列表法或树形图法计算事件的概率。教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。教学过程1.创设情景,发现新知教材是通过P151—P
2、152的例5、例6来介绍列表法和树形图法的。例5(教材P151):同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数的和是9;(3)至少有一个骰子的点数为2。这个例题难度较大,事件可能出现的结果有36种。若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。(1)创设情景引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数
3、字不同外,其他完全相同)。每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。作为游戏者,你会选择哪个装置呢?并请说明理由。168A457B图2联欢晚会游戏转盘【设计意图】选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。(2)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。然后引导学生将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?
4、”由于事件的随机性,我们必须考虑事件发生概率的大小。此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。怎样避免这个问题呢?实际上,可以将这个游戏分两步进行。于是,指导学生构造表格(3)指导学生构造表格AB457168首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。当A盘指针指向6或8时,B盘指针同样
5、可能指向4、5、7三个数字中的任意一个。一共会产生9种不同的结果。【设计意图】 这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。(4)学生独立填写表格,通过观察与计算,得出结论(即列表法)AB4571(1,4)(1,5)(1,7)6(6,4)(6,5)(6,7)8(8,4)(8,5)(8,7)从表中可以发现:A盘数字大于B盘数字的结果共有5种。∴P(A数较大)=,P(B数较大)=.∴P(A数较大)>P(B数较大)∴选择A装置的获胜可能性较大。在学生填写表格过程中,注意向学生强调数对的有序性。由于游戏是分两步进行的,我们也可用其他的方法来列举。即先转动A盘,可能出现1,6,8三
6、种结果;第二步考虑转动B盘,可能出现4,5,7三种结果。168开始A装置457457457B装置(5)解法二: 由图知:可能的结果为:(1,4),(1,5),(1,7), (6,4),(6,5),(6,7), (8,4),(8,5),(8,7)。共计9种。∴P(A数较大)=,P(B数较大)=.∴P(A数较大)>P(B数较大)∴选择A装置的获胜可能性较大。然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。列表和树形图是列举法求概率的两种常用的方法。【设计意图】自然地学
7、生感染了分类计数和分步计数思想。2.自主分析,再探新知通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P151—P152的例5和例6)。例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数的和是9;(3)至少有一个骰子的点数为2。例1是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子
此文档下载收益归作者所有