欢迎来到天天文库
浏览记录
ID:48525649
大小:63.50 KB
页数:5页
时间:2020-02-25
《G03高中数学一年级单元上课实践示例:《对数》3拓展资源参考文献.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、普通高中数学必修①课程标准在本模块中,学生将学习集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言。使用集合语言,可以简洁、准确地表达数学的一些内容。高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。学生将学习指数函数、对数函数等具体
2、的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。一、内容与要求1.集合(约4课时)(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。②在具体情境中,了解全集与空集
3、的含义。(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。2.函数概念与基本初等函数I(约32课时)(1)函数①通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。②在实际情境中,会根据不同的需要选择恰当的方法(如
4、图象法、列表法、解析法)表示函数。③通过具体实例,了解简单的分段函数,并能简单应用。④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。⑤学会运用函数图象理解和研究函数的性质(参见例1)。(2)指数函数①通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与
5、特殊点。④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。③知道指数函数y=ax与对数函数y=logax互为反函数(a>0,a≠1)。(4)幂函数通过实例,了解幂函数的概念;结合
6、函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。(5)函数与方程①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。(6)函数模型及其应用①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广
7、泛应用。(7)实习作业根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求(参见第90页)。二、说明与建议1.集合是一个不加定义的概念,教学中应结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生理解集合的含义。学习集合语言最好的方法是使用,在教学中要创设使学生运用集合语言进行表达和交流的情境和机会,以便学生在实际使用中逐
8、渐熟悉自然语言、集合语言、图形语言各自的特点,进行相互转换并掌握集合语言。在关于集合之间的关系和运算的教学中,使用Venn图是重要的,有助于学生学习、掌握、运用集合语言和其他数学
此文档下载收益归作者所有