欢迎来到天天文库
浏览记录
ID:48494888
大小:309.50 KB
页数:18页
时间:2020-01-18
《数学人教版八年级上册人教数学八上15.3.1分式方程的解法.3.1分式方程的解法.ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、15.3分式方程(一)知识回顾:1.观察这是个什么方程?2.什么叫一元一次方程?(整式方程)①只含有一个未知数x②未知数x的次数为1③各项都是整式3.解一元一次方程的一般步骤有哪些?解:去分母去括号移项合并同类项系数化1说说两方程有何异同一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?解:设江水的流速为v千米/时,则顺水速度为____千米/时;逆水速度为______千米/时;根据题意,得情境问题分式方程像这样,分母中含有未知数的方程叫做
2、分式方程。下列方程中,哪些是分式方程?哪些整式方程.整式方程分式方程解得:下面我们一起研究下怎么样来解分式方程:方程两边同乘以(20+v)(20-v),得:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。探究检验:将v=5代入分式方程,左边=4=右边,所以v=5是原分式方程的解。一元一次方程转化从去分母后所得的整式方程中解出的x+5=10能使分式方程的分母为0的解解分式方程:解:方程两边同乘以最简公分母(x-5)(x+5),得:解得:x=5检验:将x=5代入x-5、x2-25的值都为0,相应分式无意
3、义。所以x=5不是原分式方程的解。∴原分式方程无解。增根解方程解:方程两边都乘以x(x–2),约去分母,得5(x–2)=7x解这个整式方程,得x=–5检验:当x=–5时,x(x–2)=(–5)(–5–2)=35≠0所以–5是原方程的根.例1例2解方程解:方程两边都乘以(x–2),约去分母,得1=x–1–3(x–2)解这个整式方程,得x=2检验:当x=2时,x–2=0所以2是增根,原方程无解.增根的定义增根:由去分母后所得的整式方程解出的,使分母为零的根.使最简公分母值为零的根······产生的原因:思考1、上面两个分式方程中,为什么
4、10020+V6020-V=去分母后得到的整式方程的解就是它的解,而去分母后得到的整式方程的解却不1x-510=x2-25是原分式方程的解呢?1x-510=x2-25我们来观察去分母的过程10020+V6020-V=100(20-v)=60(20+v)x+5=10两边同乘(20+v)(20-v)当v=5时,(20+v)(20-v)≠0两边同乘(x+5)(x-5)当x=5时,(x+5)(x-5)=0分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就
5、不是原分式方程的解.2、怎样检验所得整式方程的解是否是原分式方程的解?将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解.思考解分式方程的一般步骤解分式方程的思路是:分式方程整式方程去分母一化二解三检验归纳提升分式方程整式方程a是分式方程的解X=aa不是分式方程的解去分母解整式方程检验目标最简公分母不为0最简公分母为0教师指导小结1、解分式方程的思路是:分式方程整式方程去分母2、解分式方程的一般步骤:一化二解三检验1、在方程的两边都乘以最简公分母,约去分母,化成整式
6、方程.2、解这个整式方程.3、把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.4、写出原方程的根.例2:k为何值时,方程产生增根?问:这个分式方程何时有增根?答:这个分式方程产生增根,则增根一定是使方程中的分式的分母为零时的未知数的值,即x=2。问:当x=2时,这个分式方程产生增根怎样利用这个条件求出k值?答:把含字母k的分式方程转化成含k的整式方程,求出的解是含k的代数式,当这个代数式等于2时可求出k值。例2:k为何值时,方程产生增根?解:方程两边都
7、乘以x-2,约去分母,得k+3(x-2)=x-1把x=2代入以上方程得:K=1所以当k=1时,方程产生增根。解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化成整式方程.2.解这个整式方程.3.把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去.4.写出原方程的根.x2x-353-2x(2)+=43x-14x(1)=解方程随堂练习思考题:解关于x的方程产生增根,则常数m的值等于()(A)-2(B)-1(C)1(D)2x-3x-1x-1m=
此文档下载收益归作者所有