资源描述:
《函数定义域,值域求法以及分段函数.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、(一)函数的概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)
2、x∈A}叫做函数的值域(range).注意:“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x
3、对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(二)映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射(mapping).记作“f:AB”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其
4、中f表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。1.例题分析:下列哪些对应是从集合A到集合B的映射?(1)A={P
5、P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P
6、P是平面直角体系中的点},B={(x,y)
7、x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x
8、x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x
9、x是新华中学的班级},B={x
10、x是
11、新华中学的学生},对应关系f:每一个班级都对应班里的学生.思考:将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f:BA是从集合B到集合A的映射吗?(三)函数的表示法常用的函数表示法:(1)解析法;(2)图象法;(3)列表法.三、典例解析1、定义域问题例1求下列函数的定义域:①;②;③解:①∵x-2=0,即x=2时,分式无意义,而时,分式有意义,∴这个函数的定义域是.②∵3x+2<0,即x<-时,根式无意义,而,即时,根式才有意义,∴这个函数的定义域是{
12、}.③
13、∵当,即且时,根式和分式同时有意义,∴这个函数的定义域是{
14、且}另解:要使函数有意义,必须:Þ例2求下列函数的定义域:①②③④⑤解:①要使函数有意义,必须:即:∴函数的定义域为:[]②要使函数有意义,必须:∴定义域为:{x
15、}③要使函数有意义,必须:Þ∴函数的定义域为:④要使函数有意义,必须:∴定义域为:⑤要使函数有意义,必须:即x<或x>∴定义域为:例3若函数的定义域是R,求实数a的取值范围解:∵定义域是R,∴∴例4若函数的定义域为[-1,1],求函数的定义域解:要使函数有意义,必须:∴函数的定义域为:例5已知f(x)的定义域为
16、[-1,1],求f(2x-1)的定义域。分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中的x位置相同,范围也应一样,∴-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域。(注意:f(x)中的x与f(2x-1)中的x不是同一个x,即它们意义不同。)解:∵f(x)的定义域为[-1,1],∴-1≤2x-1≤1,解之0≤x≤1,∴f(2x-1)的定义域为[0,1]。例
17、6已知已知f(x)的定义域为[-1,1],求f(x2)的定义域。答案:-1≤x2≤1x2≤1-1≤x≤1练习:设的定义域是[-3,],求函数的定义域解:要使函数有意义,必须:得:∵≥0∴∴函数的定域义为:例7已知f(2x-1)的定义域为[0,1],求f(x)的定义域因为2x-1是R上的单调递增函数,因此由2x-1,x∈[0,1]求得的值域[-1,1]是f(x)的定义域。已知f(3x-1)的定义域为[-1,2),求f(2x+1)的定义域。)(提示:定义域是自变量x的取值范围)练习:已知f(x2)的定义域为[-1,1],求f(x)的定
18、义域若的定义域是,则函数的定义域是( )A.BC.D.已知函数的定义域为A,函数的定义域为B,则( )A.B.BC.D.2.值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为{x
19、x