2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx

2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx

ID:48408287

大小:707.44 KB

页数:11页

时间:2019-11-14

2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx_第1页
2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx_第2页
2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx_第3页
2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx_第4页
2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx_第5页
资源描述:

《2019高考数学二轮复习第一篇微型专题微专题02函数的图象与函数的应用练习理.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、02 函数的图象与函数的应用1.函数y=13

2、log3x

3、的图象是(  ).解析▶ 当x≥1时,y=13

4、log3x

5、=13log3x=1x.当0

6、log3x

7、=3log3x=x.∴y=13

8、log3x

9、=1x,x≥1,x,0

10、212-112=-1-2=-3<0,f(1)=log21-11=0-1<0,f(2)=log22-12=1-12=12>0,f(3)=log23-13>1-13=23>0,∴f(1)·f(2)<0,∴函数f(x)=log2x-1x的零点在区间(1,2)内,故选C.答案▶ C3.已知函数f(x)=-x2+4x,x≤2,log2x-a,x>2有两个不同的零点,则实数a的取值范围是(  ).A.[-1,0)B.(1,2]C.(1,+∞)D.(2,+∞)解析▶ 当x≤2时,由-x2+4x=0,得x=0;当x>2时,令f(x)=log2x-a=0,得x

11、=2a.又函数f(x)有两个不同的零点,∴2a>2,解得a>1,故选C.答案▶ C4.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于(  ).A.6B.7C.8D.7或8解析▶ 盈利总额为21n-9-2n+12×n(n-1)×3=-32n2+412n-9,由于对称轴为直线n=416,所以当n=7时,盈利总额取最大值,故选B.答案▶ B能力1▶ 会识别

12、函数的图象【例1】 函数y=sinx+ln

13、x

14、在区间[-3,3]上的图象大致为(  ).解析▶ 设f(x)=sinx+ln

15、x

16、,当x>0时,f(x)=sinx+lnx,则f'(x)=cosx+1x.当x∈(0,1)时,f'(x)>0,即函数f(x)在(0,1)上为单调递增函数,排除B;当x=1时,f(1)=sin1>0,排除D;因为f(-x)=sin(-x)+ln

17、-x

18、=-sinx+ln

19、x

20、,所以f(-x)≠±f(x),所以函数f(x)为非奇非偶函数,排除C.故选A.答案▶ A【例2】 函数y=sinx(1+cos2x)在区间[-2,

21、2]上的图象大致为(  ).解析▶ 函数y=sinx(1+cos2x)的定义域为[-2,2],其关于原点对称,且f(-x)=sin(-x)(1+cos2x)=-sinx(1+cos2x)=-f(x),则f(x)为奇函数,其图象关于原点对称,排除D;当00,排除C;又2sinxcos2x=0,可得x=π2或x=-π2或x=0,排除A,故选B.答案▶ B  函数图象的辨识主要从以下几个方面入手:(1)函数图象的对称性;(2)函数图象的单调性;(3)特殊点.1.函数f(x)=2x-1

22、,x≥0,-x2-2x,x<0的图象大致是(  ).解析▶ 当x≥0时,f(x)=2x-1,根据指数函数g(x)=2x的图象向下平移一个单位,即可得到函数f(x)的图象.当x<0时,f(x)=-x2-2x,根据二次函数的图象与性质,可得到相应的图象.综上,函数f(x)的图象为选项D中的图象.答案▶ D2.函数f(x)=1-x2ex的图象大致是(  ).解析▶ 因为f(-x)=1-x2e-x与f(x)=1-x2ex不相等,所以函数f(x)=1-x2ex不是偶函数,其图象不关于y轴对称,所以可排除B,C.代入x=2,得f(x)<0,可排除A.故选

23、D.答案▶ D能力2▶ 会利用函数图象解决函数的零点问题【例3】 已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-loga(x+2)有4个零点,则实数a的取值范围是(  ).                  A.(1,5)B.(1,5]C.(5,+∞)D.[5,+∞)解析▶ 由题意可知函数f(x)是周期为2的偶函数,结合当x∈[-1,0]时,f(x)=x2,绘制函数图象如图所示,函数g(x)有4个零点,则函数f(x)与函数y=loga(

24、x+2)的图象在区间[-1,3]内有4个交点,结合函数图象可得,loga(3+2)≤1,解得a≥5,即实数a的取值范围是[5,+∞).答案▶ D【例4】 定义在R上

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。