欢迎来到天天文库
浏览记录
ID:48392104
大小:215.23 KB
页数:10页
时间:2019-10-25
《2020版高考数学第10章计数原理、概率、随机变量及其分布第6节离散型随机变量的均值与方差、正态分布教学案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六节 离散型随机变量的均值与方差、正态分布[考纲传真] 1.理解取有限个值的离散型随机变量的均值、方差的概念.2.会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单实际问题.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.1.离散型随机变量的均值与方差若离散型随机变量X的分布列为P(X=ai)=pi(i=1,2,…,r).(1)均值EX=a1p1+a2p2+…+arpr,均值EX刻画的是X取值的“中心位置”.(2)方差DX=E(X-EX)2为随机变量X的方差,它刻画了随机变量X与其均值EX的平均偏离程度.2.
2、均值与方差的性质(1)E(aX+b)=aEX+b.(2)D(aX+b)=a2DX(a,b为常数).3.两点分布与二项分布的均值、方差均值方差变量X服从两点分布EX=pDX=p(1-p)X~B(n,p)EX=npDX=np(1-p)4.正态分布(1)X~N(μ,σ2),表示X服从参数为μ和σ2的正态分布.(2)正态分布密度函数的性质:①函数图像关于直线x=μ对称;②σ(σ>0)的大小决定函数图像的“胖”“瘦”;③p(μ-σ<X<μ+σ)=68.3%;p(μ-2σ<X<μ+2σ)=95.4%;p(μ-3σ<X<μ+3σ)=99.7%.1.均值与方差的关系:DX=
3、EX2-E2X.2.超几何分布的均值:若X服从参数为N,M,n的超几何分布,则EX=.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(2)若X~N(μ,σ2),则μ,σ2分别表示正态分布的均值和方差.( )(3)随机变量的均值是常数,样本的平均值是随机变量.( )(4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小.( )[答案] (1)√ (2)√ (3)× (4)√2.(教材改编)已知X的分布
4、列为X-101Pa设Y=2X+3,则EY的值为( )A. B.4 C.-1 D.1A [由概率分布列的性质可知:++a=1,∴a=.∴EX=-1×+0×+1×=-.∴EY=3+2EX=3-=.]3.已知随机变量X+η=8,若X~B(10,0.6),则随机变量η的均值Eη及方差Dη分别是( )A.6和2.4B.2和2.4C.2和5.6D.6和5.6B [设随机变量X的均值及方差分别为EX,DX,因为X~B(10,0.6),所以EX=10×0.6=6,DX=10×0.6×(1-0.6)=2.4,故Eη=E(8-X)=8-EX=2,Dη=D(
5、8-X)=DX=2.4,故选B.]4.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<4)=________.0.6 [由P(ξ<4)=0.8,得P(ξ≥4)=0.2.又正态曲线关于x=2对称.则P(ξ≤0)=P(ξ≥4)=0.2,∴P(0<ξ<4)=1-P(ξ≤0)-P(ξ≥4)=0.6.]5.随机变量X的分布列为P(X=k)=,k=1,2,3,C为常数,则P(0.5<X<2.5)=________. [由P(X=1)+P(X=2)+P(X=3)=1,得++=1,解得C=.所以P(0.5<X<2.5)=P(X=1)+P(X=
6、2)=+=.]求离散型随机变量的均值、方差【例1】 (1)(2017·全国卷Ⅱ改编)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=( )A.1.96 B.1.98 C.2 D.2.02(2)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.①求甲获胜的概率;②求投篮结束时甲的投球次数ξ的分布列与期望.(1)A [依题意,X~B(100,0.02),所以DX=
7、100×0.02×(1-0.02)=1.96.](2)[解] 设Ak,Bk分别表示“甲、乙在第k次投篮投中”,则P(Ak)=,P(Bk)=,其中k=1,2,3.①记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(C)=P(A1)+P(A2)+P(A3)=P(A1)+P()P()P(A2)+P()P()P()P()P(A3)=+××+2×2×=++=.②ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(B1)=+×=,P(ξ=2)=P(A2)+P(B2)=××+2×2=,P(ξ=3)=P()=2×2=.综上知,ξ的分布列为ξ123P
8、所以Eξ=1×+2×+3×=.[规律方法] 求离散型
此文档下载收益归作者所有