2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc

2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc

ID:48362316

大小:535.00 KB

页数:13页

时间:2019-11-16

2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc_第1页
2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc_第2页
2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc_第3页
2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc_第4页
2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc_第5页
资源描述:

《2018-2019高中数学第一章立体几何初步1.7.2棱柱棱锥棱台和圆柱圆锥圆台的体积1.7.3球的表面积和体积学案北师大版必修2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积学习目标 1.理解柱体、锥体、台体的体积公式(重点);2.理解球的表面积和体积公式(重点);3.能运用体积公式求解有关的体积问题,并且熟悉台体与柱体和锥体之间的转换关系(重、难点).知识点一 柱、锥、台体的体积公式几何体体积公式柱体圆柱V柱体=ShS—柱体底面积 h—柱体的高棱柱锥体圆锥V锥体=ShS—锥体底面积 h—锥体的高棱锥台体圆台V台体=(S上+S下+)·hS上、S下—台体的上、下底面面积,h—高棱台【预习评价】简单组合体分割成几个几何

2、体,其表面积如何变化?其体积呢?提示 表面积变大了,体积不变.知识点二 球的体积公式与表面积公式1.球的体积公式V=πR3(其中R为球的半径).2.球的表面积公式S=4πR2.【预习评价】球有底面吗?球面能展开成平面图形吗?提示 球没有底面,球的表面不能展开成平面.题型一 柱体、锥体、台体的体积【例1】 (1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.解析 由所给三视图可知,该几何体是由相同底面的两个圆锥和一个圆柱组成,底面半径为1m,圆锥的高为1m,圆柱的高为2m,因此该几何

3、体的体积V=2××π×12×1+π×12×2=π(m3).答案 π(2)在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,2AB=3CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为多少?解 如图,设点B到平面EMC的距离为h1,点D到平面EMC的距离为h2.连接MD.因为M是AE的中点,所以VM-ABCD=V.所以VE-MBC=V-VE-MDC.而VE-MBC=VB-EMC,VE-MDC=VD-EMC,所以==.因为B,D到平面EMC的距离即为到平面EAC的距离,而AB∥CD,且2

4、AB=3CD,所以=.所以VE-MBC=VM-EBC=V.规律方法 (1)求柱体的体积关键是求其底面积和高,底面积利用平面图形面积的求法,常转化为三角形及四边形,高常与侧棱、斜高及其在底面的投影组成直角三角形,进而求解.(2)锥体的体积公式V=Sh既适合棱锥,也适合圆锥,其中棱锥可以是正棱锥,也可以不是正棱锥.(3)三棱锥的体积求解具有较多的灵活性,因为三棱锥的任何一个面都可以作为底面,所以常常需要根据题目条件对其顶点和底面进行转换,这一方法叫作等积法.(4)台体的体积计算公式是V=(S上+S下+)h,其中S上,S

5、下分别表示台体的上、下底面的面积.计算体积的关键是求出上、下底面的面积及高,求解相关量时,应充分利用台体中的直角梯形、直角三角形.另外,台体的体积还可以通过两个锥体的体积差来计算.【训练1】 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(  )A.+1B.+3C.+1D.+3解析 由三视图可知原几何体为半个圆锥和一个三棱锥的组合体,半圆锥的底面半径为1,高为3,三棱锥的底面积为×2×1=1,高为3.故原几何体体积为:V=×π×12×3×+1×3×=+1.答案 A【训练2】 四边形ABC

6、D中,A(0,0),B(1,0),C(2,1),D(0,3),绕y轴旋转一周,求所得旋转体的体积.解 ∵C(2,1),D(0,3),∴圆锥的底面半径r=2,高h=2.∴V圆锥=πr2h=π×22×2=π.∵B(1,0),C(2,1),∴圆台的两个底面半径R=2,R′=1,高h′=1.∴V圆台=πh′(R2+R′2+RR′)=π×1×(22+12+2×1)=π,∴V=V圆锥+V圆台=5π.【训练3】 如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明PQ⊥平面DCQ;(2)求棱

7、锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.(1)证明 由条件知PDAQ为直角梯形.因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD.又DC∩QD=D.所以PQ⊥平面DCQ.(2)解 设AB=a.由题设知AQ为棱锥Q-ABCD的高,所以棱锥Q-ABCD的体积V1=a3.由(1)知PQ为棱锥P-DCQ的高.而PQ=a,△DCQ的面积为a2,所以棱锥P-DCQ的体

8、积V2=a3.故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1.题型二 球的表面积和体积【例2】 (1)已知球的表面积为64π,求它的体积;(2)已知球的体积为π,求它的表面积.解 (1)设球的半径为R,则4πR2=64π,解得R=4,所以球的体积V=πR3=π·43=π.(2)设球的半径为R,则πR3=π,解得R=5,所以球的表面积S=4πR2=4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。