资源描述:
《2019年春八年级数学下册17函数及其图像课题一次函数的性质学案新版华东师大版28》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题 一次函数的性质【学习目标】1.让学生理解一次函数的性质是由什么决定的,并能借助性质和图象判断k、b与0的大小.2.能根据函数的图象结合性质求自变量或函数值的范围.【学习重点】一次函数的性质,判断k、b与0的大小.【学习难点】根据图象判断自变量或函数值的范围.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:一次函数识图方法:k定象限(k>0,过一、三象限;k<0,过二、四象限);b定
2、截距(截y轴的点:b>0,在y轴正半轴上;b<0,在y轴负半轴上).解题思路:在确定k,b的范围之前,必先注意函数的表达式是否为一般形式:y=kx+b(k≠0,b是常数).情景导入 生成问题【旧知回顾】1.如何判断一个点是否在函数的图象上?答:把点的横坐标的值代入函数中,看纵坐标是否与函数的值相等,若相等,则点在函数的图象上,否则不在.2.在同一直角坐标系中,画出函数y=x+1和y=3x-2的图象.在你所画的一次函数图象中,直线经过哪几个象限?解:如图,函数y=x+1经过一、二、三象限;函数y=3x-2经过
3、一、三、四象限.自学互研 生成能力知识模块一 直线y=kx+b(k≠0)的位置与k、b的关系【自主探究】1.在所画的一次函数图象中,直线经过了三个象限.观察图象发现在直线y=x+1上,当一个点在直线上从左向右移动时(即自变量x从小到大时),点的位置也在逐步从低到高变化(函数y的值也从小到大),即:函数值y随自变量x的增大而增大.函数y=3x-2也是这种情况.2.在同一坐标系中,画出函数y=-x+2和y=-x-1的图象如图,发现:当一个点在直线上从左向右移动时(即自变量x从小到大时),点的位置逐步从高到低变化
4、(函数y的值也从大到小).即函数值y随自变量x的增大而减小.3.综上可知:当k>0,b≠0时,直线经过一、二、三象限或一、三、四象限;当k<0,b≠0时,直线经过一、二、四象限或经过二、三、四象限.【合作探究】范例1:(2016·玉林中考)关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )A.点(0,k)在l上 B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限分析:使用代入法,发现答案A正确;经过检验并结合代入法,发现B正确;当k>0时,由
5、识图方法发现C是正确的.故选D. 方法指导:1.准确地找到k,b;2.根据条件转化成不等式.学习笔记:1.当k>0,b>0时:2.当k>0,b<0时:3.当k<0,b>0时:4.当k<0,b<0时:行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生进一步熟悉一次函数的性质,并能在不同的问题中灵活运用.可以准确快速地根据题中的信息转化不等式,从而求出字母的取值范围. 范例2:(2016·呼和浩特中考)已知一次函
6、数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( A )A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0分析:先将函数表达式化简成一般形式y=(k-1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而确定答案为A.【自主探究】1.当k>0时,y随x的增大而增大,这时函数的图象从左到右上升.2.当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.3.当b>0,直线与y轴交于正半轴;当b<0时
7、,直线与y轴交于负半轴;特别地,当b=0时,正比例函数也有上述1与2的性质.【合作探究】范例3:已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小.解:∵函数值y随x的增大而减小,∴2m-1<0,∴m<.范例4:画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y>0?解:如图,(1)∵k=-2<0,所以随着x的增大,y将减小.图象从左到右呈下降趋势;(
8、2)当x=1时,y=0;(3)当x<1时,y>0.交流展示 生成新知1.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 直线y=kx+b(k≠0)的位置与k、b的关系知识模块二 一次函数y=kx+b(k