第4章-贪心算法.ppt

第4章-贪心算法.ppt

ID:48251018

大小:494.00 KB

页数:60页

时间:2020-01-18

第4章-贪心算法.ppt_第1页
第4章-贪心算法.ppt_第2页
第4章-贪心算法.ppt_第3页
第4章-贪心算法.ppt_第4页
第4章-贪心算法.ppt_第5页
资源描述:

《第4章-贪心算法.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第4章贪心算法1学习要点理解贪心算法的概念。掌握贪心算法的基本要素(1)最优子结构性质(2)贪心选择性质理解贪心算法与动态规划算法的差异理解贪心算法的一般理论通过应用范例学习贪心设计策略。(1)活动安排问题;(2)最优装载问题;(3)哈夫曼编码;(4)单源最短路径;(5)最小生成树;(6)多机调度问题。2顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能

2、产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。34.1活动安排问题活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。44.1活动安排问题设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要

3、求使用该资源的起始时间si和一个结束时间fi,且sivoidGreedySelector(intn,Types[],Typef[],boolA[]){A[1]=true;intj=1;for(inti=2;i<=n;i++){if(s[i]>=f[j]){A[i]=true;j=i

4、;}elseA[i]=false;}}下面给出解活动安排问题的贪心算法GreedySelector:各活动的起始时间和结束时间存储于数组s和f中且按结束时间的非减序排列64.1活动安排问题由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。算法greedySelector的效率极高。当输入的活动已按结束时间的非减序

5、排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。74.1活动安排问题例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i1234567891011S[i]130535688212f[i]456789101112131484.1活动安排问题算法greedySelector的计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。94.1活动安排问

6、题若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。104.2贪心算法的基本要素本节着重讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具

7、有2个重要的性质:贪心选择性质和最优子结构性质。114.2贪心算法的基本要素1、贪心选择性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。124.2贪心算法的基本

8、要素当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。2、最优子结构性质134.2贪心算法的基本要素贪

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。