欢迎来到天天文库
浏览记录
ID:48214876
大小:1.15 MB
页数:16页
时间:2020-01-22
《材料现代分析与测试 第五章 光电子能谱分析.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第五章光电子能谱分析一、教学目的理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。二、重点、难点重点:光电子能谱分析原理、光电子能谱实验技术及应用。难点:光电子能谱分析原理。第一节概述电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分
2、析法,它在理论上和实际应用上都有广泛的研究领域。表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。一、表面分析可以得到的信息表面分析是借助于各种表面分析仪,对物体10nrn以内的表面层进行分析,可得到的信息有:(1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。定量分析也只能达到半定量程度。(2)物
3、质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。(3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。(4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。二、表面分析法的特点表面分析技术与普通光谱仪不同,它不是研究光与物质的相互作用后所产生的光的特性,而是研究光(或
4、粒子)与物质相互作用后被激发出来的二次粒子(电子、离子)的能量,以达到所要获得的结果。它是测定物质表面的平均成分,不是体内,也不是微区成分,它测定的是物质受激而发出的价电子或内层电子的能量;与红外光谱相比,红外光谱给出的是分子指纹,或是基团特征,而表面分析则可给出原子指纹,测定原子的价态(电子结构)、原子和电子所处的能级,从而可以定出分子结构。表面分析的另一特点是无损分析,分析的是最表层的元素信息,分析灵敏度极高。三、各种表面分析仪及其研究目的表面分析只是测定物质表面层厚度在10nrn以内的各种信息,所以与粒子逸出的深度紧密相关。表面分析法所用
5、的仪器主要有以下几种:(1)离子探针微区分析(缩写IMMA)和X射线微区成分分析(电子探针)一样,是测定物质表面微区的化学成分,但是它又与电子探针或能谱分析有差异,主要在于它的激发源是用离子束而不是电子束,测量的是被激发出的离子的质量而不是特征X射线的能量。(2)紫外光电子能谱(缩写UPS)这是用紫外光作发射源,激发元素的价电子,作元素成分分析的电子结构分析。(3)俄歇电子能谱(编写AES)俄歇电子的能量一般在50~2000eV,所以逸出深度很小,仅0.4~2nm。电子的能量和逸出深度与被测样品的材料有关,与激发它的能量无关。(4)光电子能谱.
6、或X光电子能谱(XPS),又称电子能谱化学分析(ESCA)。这是1962年才发现的。它是用x射线作激发源轰击出样品中元素的内层电子,并直接测量二次电子的能量,这种能量表现为元素内层电子的结合能E。E随元素而不同,并且有较高的分辨力,它不仅可以得到原子的第一电离能,而且可以得到从价电子到K壳层的各级电子电离能,有助于了解离子的几何构型和轨道成健特性,是使用较为广泛的一种表面分析仪。本章主要介绍光电子能谱和俄歇电子能谱的基本原理、实验方法和应用。表5-1主要表面分析方法综合图5-1离子、电子、光子(X射线)与固体表面相互作用的模式图第二节光电子能谱
7、的基本原理一、光与物质的相互作用1.光电效应已经知道,当具有一定能量h的人射光子与样品中的原子相互作用时,单个光子把全部能量交级原子中某壳层上一个受束缚的电子,这个电子就获得了能量h。如果h大于该电子的结合能E。,那么电子就将脱离原来受束缚的能级。若还有多余的能量可以使电子克服功函数,则电子将从原子中发射出去,成为自由光电子,如图5-2,这个过程表示如下:h十A—A+e(5-1)式中A——中性原子;h——辐射能量;A——处于激发态离子;e——发射出的光电子。图5-2光电效应的过程2.受激原子的弛豫——去激发当入射光子与原子相互作用产生了光电子,
8、这时原子处于受激发高能量状态,如式(5-1)中的A,有趋于平衡的倾向,以达到低能量状态,这称作弛豫过程。假设入射光子将原子K壳层的一个电子轰击出去成为
此文档下载收益归作者所有