欢迎来到天天文库
浏览记录
ID:48186429
大小:572.50 KB
页数:25页
时间:2019-11-14
《2019年高考数学大一轮复习热点聚焦与扩展专题50直线与圆锥曲线的位置关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题50直线与圆锥曲线的位置关系【热点聚焦与扩展】纵观近几年的高考试题,高考对直线与圆锥曲线的位置关系的考查,一直是命题的热点,较多的考查直线与椭圆、抛物线的位置关系问题;有时,先求轨迹方程,再进一步研究直线与曲线的位置关系.命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研
2、究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明直线与椭圆、直线与抛物线位置关系问题的解法与技巧.(一)直线与椭圆位置关系1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点)2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定,下面以直线和椭圆:为例(1)联立直线与椭圆方程:(2)确定主变量(或)并通过直线方程消去另一变量(
3、或),代入椭圆方程得到关于主变量的一元二次方程:,整理可得:(3)通过计算判别式的符号判断方程根的个数,从而判定直线与椭圆的位置关系①方程有两个不同实根直线与椭圆相交②方程有两个相同实根直线与椭圆相切③方程没有实根直线与椭圆相离3、若直线上的某点位于椭圆内部,则该直线一定与椭圆相交(二)直线与抛物线位置关系:相交,相切,相离1、位置关系的判定:以直线和抛物线:为例联立方程:,整理后可得:(1)当时,此时方程为关于的一次方程,所以有一个实根.此时直线为水平线,与抛物线相交(2)当时,则方程为关于的二次方程,可通过判别式进行判定①方程有两个不同
4、实根直线与抛物线相交②方程有两个相同实根直线与抛物线相切③方程没有实根直线与抛物线相离2、焦点弦问题:设抛物线方程:,过焦点的直线(斜率存在且),对应倾斜角为,与抛物线交于联立方程:,整理可得:(1)(2)(3)(三)直线与双曲线位置关系1、直线与双曲线位置关系,相交,相切,相离2、直线与双曲线位置关系的判定:与椭圆相同,可通过方程根的个数进行判定以直线和椭圆:为例:(1)联立直线与双曲线方程:,消元代入后可得:(2)与椭圆不同,在椭圆中,因为,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为,有可能为零.所以要分情况进
5、行讨论当且时,方程变为一次方程,有一个根.此时直线与双曲线相交,只有一个公共点当时,常数项为,所以恒成立,此时直线与双曲线相交当或时,直线与双曲线的公共点个数需要用判断:①方程有两个不同实根直线与双曲线相交②方程有两个相同实根直线与双曲线相切③方程没有实根直线与双曲线相离注:对于直线与双曲线的位置关系,不能简单的凭公共点的个数来判定位置.尤其是直线与双曲线有一个公共点时,如果是通过一次方程解出,则为相交;如果是通过二次方程解出相同的根,则为相切(3)直线与双曲线交点的位置判定:因为双曲线上的点横坐标的范围为,所以通过横坐标的符号即可判断交点
6、位于哪一支上:当时,点位于双曲线的右支;当时,点位于双曲线的左支.对于方程:,设两个根为①当时,则,所以异号,即交点分别位于双曲线的左,右支②当或,且时,,所以同号,即交点位于同一支上(4)直线与双曲线位置关系的几何解释:通过(2)可发现直线与双曲线的位置关系与直线的斜率相关,其分界点刚好与双曲线的渐近线斜率相同.所以可通过数形结合得到位置关系的判定①且时,此时直线与渐近线平行,可视为渐近线进行平移,则在平移过程中与双曲线的一支相交的同时,也在远离双曲线的另一支,所以只有一个交点②时,直线的斜率介于两条渐近线斜率之中,通过图像可得无论如何平
7、移直线,直线均与双曲线有两个交点,且两个交点分别位于双曲线的左,右支上.③或时,此时直线比渐近线“更陡”,通过平移观察可得:直线不一定与双曲线有公共点(与的符号对应),可能相离,相切,相交,如果相交则交点位于双曲线同一支上.(四)圆锥曲线问题的解决思路与常用公式:1、直线与圆锥曲线问题的特点:(1)题目贯穿一至两个核心变量(其余变量均为配角,早晚利用条件消掉),(2)条件与直线和曲线的交点相关,所以可设,至于坐标是否需要解出,则看题目中的条件,以及坐标的形式是否复杂(3)通过联立方程消元,可得到关于(或)的二次方程,如果所求的问题与两根的和
8、或乘积有关,则可利用韦达定理进行整体代入,从而不需求出(所谓“设而不求”)(4)有些题目会涉及到几何条件向解析语言的转换,注重数形几何,注重整体代入.则可简化运算的过程这几点归纳
此文档下载收益归作者所有