欢迎来到天天文库
浏览记录
ID:48184590
大小:305.00 KB
页数:21页
时间:2020-01-16
《新定义类型题——专项复习.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考专项复习——新定义类型题宁海县城关中学韩为平所谓“新定义”型问题,主要是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求同学们读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.关键点:一是掌握新定义的本质及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行知识、思想方法的迁移.知识小结24.(14分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图1,在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;(3)如
2、图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)例题(2013年台州市中考)24.(14分)如果三角形有一边上的中线长恰好等于这边的长,那么称
3、这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;例题(2013年台州市中考)24.(14分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图1,在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;例题(2013年台州市中考)ABC24.(14分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动
4、,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;例题(2013年台州市中考)AQPDCB24.(14分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)依据(3)的条件,提出一
5、个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)例题(2013年台州市中考)AQPDCB类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相
6、等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.练习1(2014年舟山市中考23题)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证
7、明此结论;练习1(2014年舟山市中考23题)ACDBBACD图2图1类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请
此文档下载收益归作者所有