2019-2020年高中数学1.4算法案例2教案苏教版必修3.doc

2019-2020年高中数学1.4算法案例2教案苏教版必修3.doc

ID:48165203

大小:69.30 KB

页数:2页

时间:2019-11-13

2019-2020年高中数学1.4算法案例2教案苏教版必修3.doc_第1页
2019-2020年高中数学1.4算法案例2教案苏教版必修3.doc_第2页
资源描述:

《2019-2020年高中数学1.4算法案例2教案苏教版必修3.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学1.4《算法案例2》教案苏教版必修3教学目标:(1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;(2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序;教学重点:理解辗转相除法与更相减损术求最大公约数的方法教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.教学过程一、问题情境在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的

2、最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容.二、算法设计思想:1.辗转相除法:例1.求两个正数8251和6105的最大公约数.(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)欧几里德算法:它是由欧几里德在公元前300年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数除以较小的数得到一个商和一个余数;第二步:若,则为的最大公约数;若,则用除数除以余数得到一个商和一个余数;第三步:若,则为的最大公约数;若,则用除数除以余数得

3、到一个商和一个余数;……依次计算直至,此时所得到的即为所求的最大公约数.练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)二.辗转相除法的流程图及伪代码伪代码:输出b开始输入a,b结束用较大的数除以较小的数,得到除式,直到.四、回顾小结:1.辗转相除法与更相减损术中蕴含的数学原理及算法语言的表示;2.函数的含义.五、课外作业:课本第31页第2;课本第35页第13.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。