资源描述:
《树的定义和基本术语.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第六章树和二叉树树型结构是一类重要的非线性数据结构。其中以树和二叉树最为常用。直观来说,树是以分支关系定义的层次结构。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树来形象表示。树在计算机领域中也得到广泛应用,如在编译程序中,可用树来表示源程序的语法结构。又如在数据库系统中,树形结构也是信息的重要组织形式之一。6.1树的定义和基本术语6.2二叉树6.3遍历二叉树和线索二叉树6.4树和森林6.6哈夫曼树及其应用6.1树的定义和基本术语(1)定义树(Tree):是n(n≥0)个结点的有限集。定义一:(递归定义):①在任意一棵非空
2、树中,有且仅有一个特定的称为根(root)的结点;②当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每一个集合本身又是一棵树。并且T1,T2,…,Tm,称为根的子树(SubTree)。定义二:(形式定义)任何一棵树是一个二元组Tree=(root,F)。其中:root是数据元素,称做树的根结点;F是m(m≥0)棵树的森林,F=(T1,T2,…,Tm),其中Ti=(ri,Fi)称做根root的第i棵子树;当m≠0时,在树根和其子树森林之间存在下列关系:RF={
3、i=1,2,…,m;m>0}(2)表
4、示形式该树有13个结点。其中,A是树根,其余结点分成3个互不相交的子集:T1={B,E,F,K,L},T2={C,G},T3={D,H,I,J,M};T1、T2和T3都是A的子树,其本身也是一棵树。层次A1BCD2EFGHIJ3KLM4图6.1一般的树A该树又可表示为如下三种形式:(a)嵌套集合表示(c)凹入表示法(A(B(E(K,L),F),C(G),D(H(M),I,J)))(b)广义表表示ABCDEFGHIJKLMABCDEFGHIJKLM图6.2树的其他3种表示法(3)树的抽象数据类型定义ADTTree{数据对象D:D是具有相同特性的数据
5、元素的集合。数据关系R:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}≠Ф,则存在D-{root}的一个划分D1,D2,…,Dm(m>0),对任意j≠k(1≤j,k≤m)有Dj∩Dk=Ф,且对任意的i(1≤i≤m),唯一存在数据元素xi∈Di,有∈H;(3)对应于D-{root}的划分,H-{,…,}有唯一的一个划分H1,H2,…,Hm(m>0),对任意j≠
6、k(1≤j,k≤m)有Hj∩Hk=Ф,且对任意i(1≤i≤m),Hi是Di上的二元关系,(Di,{Hi})是一棵符合本定义的树,称为根root的子树。基本操作:InitTree(&T);操作结果:构造空树T。DestroyTree(&T);初始条件:树T存在。操作结果:销毁树T。CreateTree(&T,definition);初始条件:definition给出树T的定义。操作结果:按definition构造树T。ClearTree(&T);初始条件:树T存在。操作结果:将树T清为空树。TreeEmpty(T);初始条件:树T存在。操作结果:若
7、T为空树,则返回TRUE,否则返回FALSE。TreeDepth(T);初始条件:树T存在。操作结果:返回T的深度。Root(T);初始条件:树T存在。操作结果:返回T的根。Value(T,cur_e);初始条件:树T存在,cur_e是T中某个结点。操作结果:返回cur_e的值。Assign(T,cur_e,value);初始条件:树T存在,cur_e是T中某个结点。操作结果:结点cur_e赋值为value。Parent(T,cur_e);初始条件:树T存在,cur_e是T中某个结点。操作结果:若cur_e是T的非根结点,则返回它的双亲,否则函数
8、值为“空”。LeftChild(T,cur_e);初始条件:树T存在,cur_e是T中某个结点。操作结果:若cur_e是T的非叶子结点,则返回它的最左孩子,否则返回“空”。RightSibling(T,cur_e);初始条件:树T存在,cur_e是T中某个结点。操作结果:若cur_e有右兄弟,则返回它的右兄弟,否则函数值为“空”。InsertChild(&T,&P,i,c);初始条件:树T存在,p指向T中某个结点,1≤i≤p所指结点的度+1,非空树c与T不相交。操作结果:插入c为T中p指结点的第i棵子树。DeleteChild(&T,&P,i);
9、初始条件:树T存在,p指向T中某个结点,1≤i≤p指结点的度。操作结果:删除T中p所指结点的第i棵子树。TraverseTree(T,v