bp神经网络详解和实例.ppt

bp神经网络详解和实例.ppt

ID:48043892

大小:1.03 MB

页数:85页

时间:2019-04-30

bp神经网络详解和实例.ppt_第1页
bp神经网络详解和实例.ppt_第2页
bp神经网络详解和实例.ppt_第3页
bp神经网络详解和实例.ppt_第4页
bp神经网络详解和实例.ppt_第5页
资源描述:

《bp神经网络详解和实例.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人工神经网络(ArtificialNeuralNetwroks-----ANN)-----HZAU数模基地引言利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。研究ANN目的:(1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。(2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。ANN的研究内容(1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神

2、经元间互连权值,使系统达到稳定状态,满足学习要求的算法。(2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。(3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。研究ANN方法(1)生理结构的模拟:用仿生学观点,探索人脑的生理结构,把对人脑的微观结构及其智能行为的研究结合起来即人工神经网络(ArtificialNeuralNetwroks,简称ANN)方法。(2)宏观功能的模拟:从人的思维活动和智能行为的心理学特性出发,利用计算机系统来对人脑智能进行宏观功能的模拟,即符号处理方法。AN

3、N研究的目的和意义(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即ANN计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。神经网络研究的发展(1)第一次热潮(40-60年代未)1943年,美国心理学家W.McCulloch和数学家W.Pitts在提出了一个简单的神经元模型,即MP模型。1958年,F.Rosenblatt等研制出了感知机(Perceptro

4、n)。(2)低潮(70-80年代初):(3)第二次热潮1982年,美国物理学家J.J.Hopfield提出Hopfield模型,它是一个互联的非线性动力学网络.他解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方法所不具备的性质.1987年首届国际ANN大会在圣地亚哥召开,国际ANN联合会成立,创办了多种ANN国际刊物。1990年12月,北京召开首届学术会议。人工神经网络研究的局限性(1)ANN研究受到脑科学研究成果的限制。(2)ANN缺少一个完整、成熟的理论体系。(3)ANN研究带有浓厚的策略和经验色彩。(4)ANN与传统技术的

5、接口不成熟。人工神经网络概述什么是人工神经网络?T.Koholen的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”二、神经元与神经网络大脑可视作为1000多亿神经元组成的神经网络图3神经元的解剖图神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激;通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程神

6、经网络研究的两个方面从生理上、解剖学上进行研究从工程技术上、算法上进行研究脑神经信息活动的特征(1)巨量并行性。(2)信息处理和存储单元结合在一起。(3)自组织自学习功能。神经网络基本模型神经元的数学模型图4神经元的数学模型其中x=(x1,…xm)T输入向量,y为输出,wi是权系数;输入与输出具有如下关系:θ为阈值,f(X)是激发函数;它可以是线性函数,也可以是非线性函数.例如,若记取激发函数为符号函数则S型激发函数:或注:若将阈值看作是一个权系数,-1是一个固定的输入,另有m-1个正常的输入,则(1)式也可表示为:(1)参数识别:假设函

7、数形式已知,则可以从已有的输入输出数据确定出权系数及阈值。2、神经网络的数学模型众多神经元之间组合形成神经网络,例如下图的含有中间层(隐层)的B-P网络基本BP网络的拓扑结构b1bia1c1cqcjahbpan………………Wp1WiqWpjW1qW1jWijV11W11WpqWi1Vh1VhiV1iVn1VniV1pVhpVnp输出层LC隐含层LB输入层LAWVANN类型与功能一般而言,ANN与经典计算方法相比并非优越,只有当常规方法解决不了或效果不佳时ANN方法才能显示出其优越性。尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故

8、障诊断、特征提取和预测等问题,ANN往往是最有利的工具。另一方面,ANN对处理大量原始数据而不能用规则或公式描述的问题,表现出极大的灵活性和自适应性。人工神经网络(ArtificialNeur

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。