第六节 旋转曲面和二次曲面.ppt

第六节 旋转曲面和二次曲面.ppt

ID:48038599

大小:1012.51 KB

页数:19页

时间:2020-01-11

第六节  旋转曲面和二次曲面.ppt_第1页
第六节  旋转曲面和二次曲面.ppt_第2页
第六节  旋转曲面和二次曲面.ppt_第3页
第六节  旋转曲面和二次曲面.ppt_第4页
第六节  旋转曲面和二次曲面.ppt_第5页
资源描述:

《第六节 旋转曲面和二次曲面.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、定义2.一条平面曲线一、旋转曲面绕其平面上一条定直线旋转一周所形成的曲面叫做旋转曲面.该定直线称为旋转轴.例如:机动目录上页下页返回结束建立yoz面上曲线C绕z轴旋转所成曲面的方程:故旋转曲面方程为当绕z轴旋转时,若点给定yoz面上曲线C:则有则有该点转到机动目录上页下页返回结束思考:当曲线C绕y轴旋转时,方程如何?机动目录上页下页返回结束例3.试建立顶点在原点,旋转轴为z轴,半顶角为的圆锥面方程.解:在yoz面上直线L的方程为绕z轴旋转时,圆锥面的方程为两边平方机动目录上页下页返回结束例4.求坐标面xoz上的双曲线分别

2、绕x轴和z轴旋转一周所生成的旋转曲面方程.解:绕x轴旋转绕z轴旋转这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为机动目录上页下页返回结束二、二次曲面三元二次方程适当选取直角坐标系可得它们的标准方程,下面仅就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法其基本类型有:椭球面、抛物面、双曲面、锥面的图形通常为二次曲面.(二次项系数不全为0)机动目录上页下页返回结束1.椭球面(1)范围:(2)与坐标面的交线:椭圆机动目录上页下页返回结束与的交线为椭圆:(4)当a=b时为旋转椭球面;同样的截痕及也为椭

3、圆.当a=b=c时为球面.(3)截痕:为正数)机动目录上页下页返回结束2.抛物面(1)椭圆抛物面(p,q同号)(2)双曲抛物面(鞍形曲面)特别,当p=q时为绕z轴的旋转抛物面.(p,q同号)机动目录上页下页返回结束3.双曲面(1)单叶双曲面椭圆.时,截痕为(实轴平行于x轴;虚轴平行于z轴)平面上的截痕情况:机动目录上页下页返回结束双曲线:虚轴平行于x轴)时,截痕为时,截痕为(实轴平行于z轴;机动目录上页下页返回结束相交直线:双曲线:(2)双叶双曲面双曲线椭圆注意单叶双曲面与双叶双曲面的区别:双曲线单叶双曲面双叶双曲面P1

4、8目录上页下页返回结束图形4.椭圆锥面椭圆在平面x=0或y=0上的截痕为过原点的两直线.可以证明,椭圆①上任一点与原点的连线均在曲面上.①(椭圆锥面也可由圆锥面经x或y方向的伸缩变换得到,见书P316)机动目录上页下页返回结束5.柱面引例.分析方程表示怎样的曲面.的坐标也满足方程解:在xoy面上,表示圆C,沿曲线C平行于z轴的一切直线所形成的曲面称为圆故在空间过此点作柱面.对任意z,平行z轴的直线l,表示圆柱面在圆C上任取一点其上所有点的坐标都满足此方程,机动目录上页下页返回结束定义3.平行定直线并沿定曲线C移动的直线l

5、形成的轨迹叫做柱面.表示抛物柱面,母线平行于z轴;准线为xoy面上的抛物线.z轴的椭圆柱面.z轴的平面.表示母线平行于(且z轴在平面上)表示母线平行于C叫做准线,l叫做母线.机动目录上页下页返回结束一般地,在三维空间柱面,柱面,平行于x轴;平行于y轴;平行于z轴;准线xoz面上的曲线l3.母线柱面,准线xoy面上的曲线l1.母线准线yoz面上的曲线l2.母线机动目录上页下页返回结束内容小结1.空间曲面三元方程球面旋转曲面如,曲线绕z轴的旋转曲面:柱面如,曲面表示母线平行z轴的柱面.又如,椭圆柱面,双曲柱面,抛物柱面

6、等.机动目录上页下页返回结束2.二次曲面三元二次方程椭球面抛物面:椭圆抛物面双曲抛物面双曲面:单叶双曲面双叶双曲面椭圆锥面:机动目录上页下页返回结束斜率为1的直线平面解析几何中空间解析几何中方程平行于y轴的直线平行于yoz面的平面圆心在(0,0)半径为3的圆以z轴为中心轴的圆柱面平行于z轴的平面思考与练习1.指出下列方程的图形:机动目录上页下页返回结束

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。