2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书

2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书

ID:47941694

大小:554.00 KB

页数:24页

时间:2019-11-09

2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书_第1页
2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书_第2页
2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书_第3页
2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书_第4页
2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书_第5页
资源描述:

《2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学二轮复习上篇专题整合突破专题七数学思想方法教书用书高考定位 函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程

2、组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个

3、方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是

4、正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一 函数与方程思想的应用[微题型1] 不等式问题中的函数(方程)法【例1-1】(1)f(x)=ax3-3x+1对于x∈[-1,1],总有f(x)≥0成立,则a=________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________.解析 (1)若x=0,则不论a取何值,f(x)≥0显然成立;当x>0即

5、x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.设g(x)=-,则g′(x)=,所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)max=g=4,从而a≥4.当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为a≤-,设g(x)=-,且g(x)在区间[-1,0)上单调递增,因此g(x)min=g(-1)=4,从而a≤4,综上a=4.(2)设F(x)=f(x)g(x),由于f(x),g(x)分别是定义在R上的奇函数和偶函数,得F(-x)=f(-x)·g(-x)=-f(x

6、)g(x)=-F(x),即F(x)在R上为奇函数.又当x<0时,F′(x)=f′(x)·g(x)+f(x)g′(x)>0,所以x<0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x>0时,F(x)也是增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).所以,由图可知F(x)<0的解集是(-∞,-3)∪(0,3).答案 (1)4 (2)(-∞,-3)∪(0,3)探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f(x

7、)>0或f(x)<0恒成立,一般可转化为f(x)min>0或f(x)max<0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 数列问题的函数(方程)法【例1-2】已知数列{an}满足a1=3,an+1=an+p·3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{an}的通项公式;(2)设数列{bn}满足bn=,证明:bn≤.(1)解 由a1=3,an+1=an+p·3n,得a2=3+3p,a3=a2+9p=3+12p.因为a1,a2+6,a3成等差数

8、列,所以a1+a3=2(a2+6),即3+3+12p=2(3+3p+6),得p=2,依题意知,an+1=an+2×3n.当n≥2时,a2-a1=2×31,a3-a2=2×32,…,an-an-1=2×3n-1.将以上式子相加得an-a1=2(31+32+…+3n-1),所以an-a1=2×=3n-3,所以an=3n(n≥2).又a1=3符合上式,故an=3n.(2)证明 因为an=3n,所以bn=.所以bn+1-bn=-=(n

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。