欢迎来到天天文库
浏览记录
ID:47940297
大小:101.00 KB
页数:9页
时间:2019-11-09
《2019-2020年高考数学一轮总复习第13章坐标系与参数方程高考AB卷理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学一轮总复习第13章坐标系与参数方程高考AB卷理 坐标系与极坐标1.(xx·全国Ⅰ,23)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.解 (1)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半
2、径的圆.将x=ρcosθ,y=ρsinθ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsinθ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sinθcosθ+1-a2=0,由已知tanθ=2,可得16cos2θ-8sinθcosθ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上.所以a=1.2.(xx·全国Ⅱ,23)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x
3、轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A、B两点,
4、AB
5、=,求l的斜率.解 (1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程ρ2+12ρcosθ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cosα,ρ1ρ2=11.
6、AB
7、=
8、ρ1-ρ2
9、==.由
10、AB
11、=得cos2α=,tanα=
12、±.所以l的斜率为或-.3.(xx·全国Ⅰ,23)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解 (1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(2)将θ=代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2
13、-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即
14、MN
15、=.由于C2的半径为1,所以△C2MN为等腰直角三角形,所以△C2MN的面积为. 参数方程4.(xx·全国Ⅲ,23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标系方程;(2)设点P在C1上,点Q在C2上,求
16、PQ
17、的最小值及此时P的直角坐标.解 (1)C1的普通方程为+y2=1.C2的直角坐标方程为x+y-4=
18、0.(2)由题意,可设点P的直角坐标为(cosα,sinα).因为C2是直线,所以
19、PQ
20、的最小值即为P到C2距离d(α)的最小值,d(α)==.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.5.(xx·全国Ⅱ,23)已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.解 (1)依题意有P(2cosα,2sinα),Q(2
21、cos2α,2sin2α),因此M(cosα+cos2α,sinα+cos2α).M的轨迹的参数方程为(α为参数,0<α<2π).(2)M点到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点. 坐标系与极坐标1.(xx·安徽,4)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为( )A.B.2C.D.2解析 由消去t得x-y-4=0,C:ρ=
22、4cosθ⇒ρ2=4ρcosθ,∴C:x2+y2=4x,即(x-2)2+y2=4,∴C(2,0),r=2.∴点C到直线l的距离d==,∴所求弦长=2=2.故选D.答案 D2.(xx·北京,11)在极坐标系中,直线ρcosθ-ρsinθ-1=0与圆ρ=2cosθ交于A,B两点,则
23、AB
24、=________.解析 直线的直角坐标方程为x-y-1=0,圆的直角坐标方程为x2+y
此文档下载收益归作者所有