高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修

高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修

ID:47923479

大小:1.07 MB

页数:4页

时间:2019-11-01

高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修_第1页
高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修_第2页
高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修_第3页
高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修_第4页
资源描述:

《高中数学第一章计数原理1.1基本计数原理课堂探究教案新人教B版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1基本计数原理课堂探究探究一分类加法计数原理的应用应用分类加法计数原理解题时,要明确以下几点:(1)弄清题目中所谓“完成一件事”是什么事,完成这件事有哪些办法,怎样才算完成这件事;(2)完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法;(3)确立恰当的分类标准,准确地进行分类,要求每一种方法必属于其中的某一类方案,不同类方案的任意两种方法是不同的方法,即分类时必须做到“不重不漏”.【典型例题1】三边长均为整数,且最大边长为11的三角形有多少个?思路分析:由题目可获取以下主要信息:①各条边长均为整数;②构成三角形的条件;

2、③确定分类标准.本题可按其中一条边长的取值进行分类.解:方法1:用整数x,y表示其中两边的边长,不妨设1≤x≤y≤11.要构成三角形,必须有x+y≥12.当y=11时,x=1,2,3,…,11,有11个三角形;当y=10时,x=2,3,…,10,有9个三角形;……当y=6时,x=6,只有1个三角形.故所求三角形的个数为11+9+7+5+3+1=36.方法2:设三角形的三边长为a,b,c,且a≤b≤c,c=11,则a+b>11.而2b≥a+b>11,故6≤b≤11.按b的可能取值进行分类,如下表所示:b的可能取值a的可能取值三角形的个数66175,6,7384,5,6,7,859

3、3,4,5,6,7,8,97102,3,4,5,6,7,8,9,109111,2,3,4,5,6,7,8,9,10,1111由分类加法计数原理,符合条件的三角形共有1+3+5+7+9+11=36(个).探究二分步乘法计数原理的应用应用分步乘法计数原理解题时,要注意以下三点:(1)明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某种方法能不能完成这件事,若不能,则必须要经过n4个步骤才能完成这件事.(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步,这件事都不可能完成.(3)根据题意正确分步,要求各步之间必须连续,只有按照这n步逐步地

4、去做,才能完成这件事,各步骤之间既不能重复也不能遗漏.【典型例题2】(1)4张卡片的正、反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成__________个不同的三位数.(2)已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示多少个不同的圆?思路分析:(1)按顺序确定各位数上的数字各有几种选择后用分步乘法计数原理求解.(2)确定一个圆的方程需要分别确定出圆心的横坐标、纵坐标以及半径,可以用分步乘法计数原理解决.(1)解析:分三个步骤:第一步:百位可放8-1=7个数;第二步:十位可放6个数;第三

5、步:个位可放4个数.根据分步乘法计数原理,可以组成N=7×6×4=168个不同的三位数.答案:168(2)解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8,9中任取一个数,有2种取法.由分步乘法计数原理知,表示的不同圆有N=3×4×2=24(个).探究三两个计数原理的综合应用对于较为复杂的问题,既需要进行“分类”,又需要进行“分步”,那么此时就要注意综合运用两个原理解决问题.首先要明确是先“分类”后“分步”,还是先“分步”后“分类”;其次在“分类”和“分步”的过程中,均要确定明确

6、的分类标准和分步程序.综合应用两个原理解应用题的方法有以下几种:(1)列举法.列举法就是完成一件事,方法不是很多,可以一一列举出来,然后再一种一种地数数,进而确定完成这件事共有多少种方法.一些列式困难、数目较少的问题一般用此方法解决;(2)字典排序法.字典排序法就是把所有的字母(数字或其他)分为前后,先排前面的字母(数字或其他),前面的排完后再依次排后面的字母(数字或其他),所有的都排完后,排序结束;(3)模型法.模型法就是根据题意,构建相关图形,再利用图形来构建两个原理的模型,从而解决问题.【典型例题3】用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位偶数

7、?思路分析:先根据条件把“比2000大的四位偶数”分类,然后分别选取千位、百位、十位上的数字.4解:完成这件事有三类方法:第一类是用0作个位的比2000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48.第二类是用2作个位的比2000大的4位偶数,它可以分三步去完

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。