2017届八年级数学上册1.3勾股定理的应用教案新北师大版

2017届八年级数学上册1.3勾股定理的应用教案新北师大版

ID:47920541

大小:133.50 KB

页数:2页

时间:2019-10-31

2017届八年级数学上册1.3勾股定理的应用教案新北师大版_第1页
2017届八年级数学上册1.3勾股定理的应用教案新北师大版_第2页
资源描述:

《2017届八年级数学上册1.3勾股定理的应用教案新北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3 勾股定理的应用21.能熟练运用勾股定理求最短距离;(难点)2.能运用勾股定理及其逆定理解决简单的实际问题.(重点)                   一、情境导入一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?二、合作探究探究点一:求几何体表面上两点之间的最短距离【类型一】长方体上的最短线段如图①,长方体的高为3cm,底面是正方形,边长为2cm,现有绳子从D出发,沿长方体表面到达B′点,问绳子最短是多少厘米?解析:可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.解:如图②,

2、在Rt△DD′B′中,由勾股定理得B′D2=32+42=25;如图③,在Rt△DC′B′中,由勾股定理得B′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5cm.方法总结:此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.【类型二】圆柱上的最短线段为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?解析:将圆筒侧面展开成平面图形,利用平面上两点之间线段最短求解,构造直角三角形,利用勾股定理来解决.

3、解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整个油纸的长为45×4=180(cm).方法总结:解决这类问题的关键就是转化,即把曲面转化为平面,曲线转化成直线,构造直角三角形,利用勾股定理求出未知线段长.探究点二:利用勾股定理解决实际问题如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.2解析:把实际问题中的角度转化为图形中的角度,找到

4、直角三角形,利用勾股定理求解.解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.方法总结:此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.三、板书设计勾股定理,的应用))通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程

5、中,感受数学学习的魅力.22

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。