欢迎来到天天文库
浏览记录
ID:47886679
大小:87.00 KB
页数:6页
时间:2019-10-17
《国际会议演讲话稿》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、自我介绍Thankyou:Mn/Ms.Chain/professorMynameissangqian.Iamveryhonoredtobeheretodooralpresentation2、(external/ckstsrnol;ikstomsl/)内容安排:Mypresentationincludesthesefiveparts.First,somebackgroundinformationaboutthisresearch;Second,systemmodelwehavedone;Third,NN-basedrelayselectionschemewehaveproposedForth,SimulationandresultsanalysisAndlast,someconclusionswehavegotP4Partone,i3、ntroductionFirstly,IwouldliketogiveyouabitofbackgroundsDifferingfromthetraditionalcryptographictechniquesbasedonsecretkeys,wecanmakeuseofwirelesschannelcharacteristicstoenhancephysicallayersecurity・Cooperativecommunicationhasbeenwidelyrecognizedasaneffectivewaytocombatwirele4、ssfadingandprovidediversitygainwhichisoneoftheresearchhotspots・Machinelearningasanemergingtechnologyhasbeenwidelyappliedinimageprocessing,cancerprediction,stockanalysisandotherfields.Sowhynottryitinwirelesscommunication?P5:Next,IwanttotalkalittlebitaboutpresentstudyRecentstu5、diesondeeplearningforwirelesscommunicationsystemshaveproposedalternativeapproachestoenhancecertainpartsoftheconventionalcommunicationsystemsuchasmodulationrecognition^channelencodinganddecoding-channelestimationanddetectionandanautoencoderwhichcanreplacethetotalsystemwithano6、velarchitecture【modulationrecognition:AnNNarchitectureformodulationrecognitionthatconsistsofa4-layerNNandtwotwo-layerNNs0channelencodinganddecoding:AplainDNNarchitectureforchanneldecodingtodecodekbitsmessagesfromNbitsnoisycodewordsochannelestimationanddetection:Adense-Netfor7、symbol-to-symboldetectioncanadoptlongshort-termmemory(LSTM)todetectanestimatedsymbol.Autoencoder:theautoencodercanrepresenttheentirecommunicationsystemandjointlyoptimizethetransmitterandreceiveroveranAWGNchannel.P6Sowhydidweconductthisresearch?Well,wewanttoexploitthepotentia8、lbenefitsofdeeplearninginenhancingphysicallayersecurityincooperative(/kso'p
2、(external/ckstsrnol;ikstomsl/)内容安排:Mypresentationincludesthesefiveparts.First,somebackgroundinformationaboutthisresearch;Second,systemmodelwehavedone;Third,NN-basedrelayselectionschemewehaveproposedForth,SimulationandresultsanalysisAndlast,someconclusionswehavegotP4Partone,i
3、ntroductionFirstly,IwouldliketogiveyouabitofbackgroundsDifferingfromthetraditionalcryptographictechniquesbasedonsecretkeys,wecanmakeuseofwirelesschannelcharacteristicstoenhancephysicallayersecurity・Cooperativecommunicationhasbeenwidelyrecognizedasaneffectivewaytocombatwirele
4、ssfadingandprovidediversitygainwhichisoneoftheresearchhotspots・Machinelearningasanemergingtechnologyhasbeenwidelyappliedinimageprocessing,cancerprediction,stockanalysisandotherfields.Sowhynottryitinwirelesscommunication?P5:Next,IwanttotalkalittlebitaboutpresentstudyRecentstu
5、diesondeeplearningforwirelesscommunicationsystemshaveproposedalternativeapproachestoenhancecertainpartsoftheconventionalcommunicationsystemsuchasmodulationrecognition^channelencodinganddecoding-channelestimationanddetectionandanautoencoderwhichcanreplacethetotalsystemwithano
6、velarchitecture【modulationrecognition:AnNNarchitectureformodulationrecognitionthatconsistsofa4-layerNNandtwotwo-layerNNs0channelencodinganddecoding:AplainDNNarchitectureforchanneldecodingtodecodekbitsmessagesfromNbitsnoisycodewordsochannelestimationanddetection:Adense-Netfor
7、symbol-to-symboldetectioncanadoptlongshort-termmemory(LSTM)todetectanestimatedsymbol.Autoencoder:theautoencodercanrepresenttheentirecommunicationsystemandjointlyoptimizethetransmitterandreceiveroveranAWGNchannel.P6Sowhydidweconductthisresearch?Well,wewanttoexploitthepotentia
8、lbenefitsofdeeplearninginenhancingphysicallayersecurityincooperative(/kso'p
此文档下载收益归作者所有