高考数学二轮复习考前回扣2函数讲学案理

高考数学二轮复习考前回扣2函数讲学案理

ID:47867415

大小:115.02 KB

页数:8页

时间:2019-11-01

高考数学二轮复习考前回扣2函数讲学案理_第1页
高考数学二轮复习考前回扣2函数讲学案理_第2页
高考数学二轮复习考前回扣2函数讲学案理_第3页
高考数学二轮复习考前回扣2函数讲学案理_第4页
高考数学二轮复习考前回扣2函数讲学案理_第5页
资源描述:

《高考数学二轮复习考前回扣2函数讲学案理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、回扣2 函 数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f(x)的定义域为[a,b],则f(g(x))的定义域为不等式a≤g(x)≤b的解集;反之,已知f(g(x))的定义域为[a,b],则f(x)的定义域为函数y=g(x)(x∈[a,b])的值域.(2)常见函数的值域①一次函数y=kx+b(k≠0)的值域为R;②二次函数y=ax2+bx+c(a≠0):当a>0时,值域为,当a<0时,值域为;③反比例函数y=(k≠0)的值域为{y∈R

2、y≠0}.2.函数

3、的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇函数(都有f(-x)=f(x)成立,则f(x)为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值,若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期.3.关于函数周期性、对称性的结论(1)函数的周期性①若函数f(x)满足f(x+a)=f(x-a),则f(x)为周期函数,2a是它的一个周期;②设f(x)是R上的偶函数,

4、且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,2a是它的一个周期;③设f(x)是R上的奇函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,4a是它的一个周期.(2)函数图象的对称性①若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则f(x)的图象关于直线x=a对称;②若函数y=f(x)满足f(a+x)=-f(a-x),即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称;③若函数y=f(x)满足f(a+x)=f(b-x),则函数f(x)的图象关于直线x=对称.4.函数的单调性函

5、数的单调性是函数在其定义域上的局部性质.①单调性的定义的等价形式:设x1,x2∈[a,b],那么(x1-x2)[f(x1)-f(x2)]>0⇔>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔<0⇔f(x)在[a,b]上是减函数.②若函数f(x)和g(x)都是减函数,则在公共定义域内,f(x)+g(x)是减函数;若函数f(x)和g(x)都是增函数,则在公共定义域内,f(x)+g(x)是增函数;根据同增异减判断复合函数y=f(g(x))的单调性.5.函数图象的基本变换(1)平移变换y=f(x)y=f(x-h),y=

6、f(x)y=f(x)+k.(2)伸缩变换y=f(x)y=f(ωx),y=f(x)y=Af(x).(3)对称变换y=f(x)y=-f(x),y=f(x)y=f(-x),y=f(x)y=-f(-x).6.准确记忆指数函数与对数函数的基本性质(1)定点:y=ax(a>0,且a≠1)恒过(0,1)点;y=logax(a>0,且a≠1)恒过(1,0)点.(2)单调性:当a>1时,y=ax在R上单调递增;y=logax在(0,+∞)上单调递增;当0

7、函数f(x)的零点⇔f(x0)=0⇔(x0,0)为f(x)的图象与x轴的交点.(2)确定函数零点的三种常用方法①解方程判定法:解方程f(x)=0;②零点定理法:根据连续函数y=f(x)满足f(a)f(b)<0,判断函数在区间(a,b)内存在零点.③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解.1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,

8、而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y=ax(a>0,a≠1)的单调性容易忽视字母a的取值讨论,忽视ax>0;对数函数y=logax(a>0,a≠1)容易忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.1.下列各图形中,是函数图象的是(  )答案 D解析 函数y=f(x)的图象与平行于y轴的直线最多只能有一个交点,故A,B,C均不

9、正确,故选D.2.若函数f(x)=则f(-3)的值为(  )A.5B.-1C.-7D.2答案 D解析 依题意,f(-3)=f(-3+2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。